Cheatsheet.R

HHHH#H
R
HHH#H

install.packages("<package name>")
Library(<package name>)

print(<something>)
Assignment statement: x <- <something>

H H

Manipulating objects in the workspace:

Ls() # List all objects in memory

rm(, <o02>, <o03>, ...) # remove one or more objects from memory by their names
rm(Llist = Ls()) # remove all objects from memory (usually not recommended)

H W R R

Operators:
Add, 2 + 3 =5
Subtract,
Multiply,
Divide, 6
Exponent, 8

Modulus operator, 9%%2 = 1
/% Integer division, 9 %/% 2 = 4
Less than
Greater than
Equal to

Less than or equal to

Greater than or equal to

Not equal to
Not
OR
And

3
6

NN N O
SN % 1
w i wWwN
W

I v A 3 >\ % 1 +
N

A
1}

HHIFHRRIIERIIFIEIERIRERRERERRRSR

0 — '~ '~ Vv

Expressions:
<X> / <Yy> - <zZ>"2 ...

H H

H H

oW W B W W R W OB R B BRI S I R I H oW W R R

R

H R R RHHR

Absolute value:

abs(<value>)

Vectors:

<y> <- c(<somethingl>, <something2>, <some
<y> <- rep(<something>, <times>)

<y> <- <intl>:<int2>

<y> <- seq(from = <valuel>, to = <value2>,

Matrices:

<m> <- matrix(c(3, 5, 7, 1, 9, 4), nrow =
<m>.nrow <- nrow(<m>) # number of rows
<m>.ncol <- ncol(<m>) # number of columns
<m> <- t(<m>) # transpose <m>
<m>[3,2]

<m>[2,]

Lists: ordered collections of elements of
<list> <- Llist(<el.name> = <el>, <e2.name>
<list>[[<index>]] # accessing Llist ele
<list>[<index>] # accessing Llist ele
<list>$<element.name> # accessing Llist ele
is.list(<something>)

<combined.list> <- c(<listl>, <list2>, <li

names (<list>) #
<list>[names(<list>) == <element.name>] #
unlist(<list>) #
unlist(<list>, use.names = FALSE) #
append(<list>, #
List(<el.name> = <e>), #

<n>) #
<list>[[<n>]] <- NULL #

thing3>, ...)

by = <step>)

3, ncol = 2, byrow = TRUE)
different types
= <e2>, <e3.name> = <e3>, ...)

ment by index, showing value only (returns a vector)
ment by index, showing both name and value (returns a List)
ment by its name
Is <something> a Llist?
st3>, ...) # list concatenation
names of List elements
all elements of a List having the same name
convert Llist into a named vector
convert Llist into a character vector
insert new element into an existing list, after index <n>
new element must be a List itself, that's why Llist(<el.name> =
<n> 1is optional; if omitted, new element is appended at the end
remove <n>th element from <list>

class(<something>) # data type

mode (something), typeof(<something>) # ho

Factors:

b <- c(1, 2, 2, 2, 3, 1, 1, 4, 5, 4)
b.as.factor <- as.factor(b)
Levels(b.as. factor)

f <- factor(c(1, 2, 3))

w a data item 1is 1internally stored in memory

<e>)

H H B R R

HHIFHRIRRIIRRERRIERSR H oW OB R

H B R R RHR B R R

H R R R

Dataframes:

e.g., <dataframe> <- as.data.frame(<matrix>)

str(<dataframe>)

Reading a dataset:

<dataframe> <- read.csv("<filename>", stringsAsFactors = FALSE)

Saving a dataset (modified or newly created dataset):

write.csv(x = <dataframe>, file = "<filename>", row.names = F) # do not include the row names (row numbers) column
saveRDS (object = <dataframe or another R object>, file = "<filename>") # save R object for the next session
<dataframe or another R object> <- readRDS(file = "<filename>") # restore R object in the next session

Examining a dataframe:

str(<dataframe>) structure of <dataframe>, all variables/columns
dim(<dataframe>) showing dimensions (numbers of rows and columns) of a dataframe
names (<dataframe>) showing column names

head(<dataframe>) the first few rows

tail (<dataframe>) the Last few rows

<dataframe>[,] the entire dataframe

<dataframe> the entire dataframe

m-th row

n-th column

summarizing a variable/column values

editing a dataframe

editing a dataframe and assigning the modified dataframe to another datavrame

<dataframe>[<m>,]
<dataframe>[,<n>]

summary (<dataframe>$<column>)
fix(<dataframe>)

new.df <- edit(<dataframe>)

HHEHEHFHRHRHEHRRERERRRESR

Adding/Removing columns to/from a dataframe:
<dataframe>$<new column name> <- <default value> # adding a new column (default values)
<dataframe>$<column name> <- NULL # removing a column
Adding a new row to a dataframe - the row must be a 1-line dataframe with the same column names:
<new row> <- data.frame(<column name 1> = <value 1>, <column name 2> = <value 2>,...)
<new data frame> <- rbind(<dataframe>, <new row>) # append new row to the end of the existing dataframe
<new data frame> <- rbind(<dataframe>[1:1,], # insert new row in the middle
<new row>,
<dataframe>[(i + 1):nrow(<dataframe>),])

Removing rows from a dataframe

<dataframe>[-1i,] # show dataframe without i-th row
<dataframe>[-c(i, J, R),] # show dataframe without rows 1, j, R
<dataframe> <- <dataframe>[-1i,] # remove i-th row from dataframe

H W

<dataframe> <- <dataframe>[-c(i, j, R),] # remove rows i, j, kR from dataframe
<dataframe> <- <dataframe>[-(i:R),] # remove rows i to k from dataframe

Changing column names:
colnames (<dataframe>)[1] <- "<new name>"

Changing row names:

rownames (<dataframe>)[1] <- "<new name>"

rownames (<dataframe>) <- c("<new name 1>", "<new name 2>",...)

rownames (<dataframe>) <- c(1, 2,...)

rownames (<dataframe>) <- List("<new name 1>", <numeric 2>,...)

Slicing and dicing dataframes:

<selection> <- <dataframe>[<some rows>, <some columns>]

<selection> <- <dataframe>[1i:k, c("<column 1>", "<column 2>",...)]

<selection> <- <dataframe>[<indexes>,]

<selection> <- subset(<dataframe>, # subset() is much Like SELECT... FROM... WHERE
<logical condition for the rows to return>,

<select statement for the columns to return>) # can be omitted; column names not prefixed by
<dataframe>$

<new dataframe> <- <dataframe>[, c("<coll name>", "<col2 name>")]

#

#
#
#

H OB R

H B W

HHRRIFRHRREHR

<new dataframe> <- <dataframe>[, <coll index>:<col2 index>)]

Shuffling rows/columns:
<dataframe> <- <dataframe>[sample(nrow(<dataframe>)),] # shuffle row-wise
<dataframe> <- <dataframe>[, sample(ncol(<dataframe>))] # shuffle column-wise

Replacing selected values in a column:
<selected var name> <- <dataframe>$<column> == <selected value>
<dataframe>$<column>[<selected var name>] <- <new value>

Applying functions to all elements in rows/columns of a dataframe:
apply(<dataframe>, <1 [2>, <function(x) {...}>) # 1 | 2: apply function(x) by row | column
sapply(<vector>, FUN = function(x) {...}) # function(x): function to be applied to each element of <vector>

Partitioning a dataframe:

install.packages('caret’)

Library(caret)

set.seed(<any specific int>) # allows for repeating the randomization process exactly
<indexes> <- createDataPartition(<dataframe>$<column>, p = 0.8, List = FALSE)
<partition 1> <- <dataframe>[<indexes>,]

<partition 2> <- <dataframe>[-<indexes>,]

for, 1if, break, next:

for (<i> in <int vector>) {
<line 1>

<line 2>

if (<logical condition>) {
<line 11>
<line 12>

break # break: exit the Lloop; next: skip the remaining Llines in this iteration
b
<line n>

}

HHHFHRIFHRIFHRRERRIRHR

while, if-else, break, next:

<1> <- <initial value>

while (logical condition involving <i>) {
<line 1>
<line 2>

if (<logical condition>) {
<line 11>
<line 12>

break # break: exit the Lloop; next: skip the remaining Llines in this iteration
} else {

<line j1>

<line j2>

<line n>
<1> <- <modify <i>>

}

HHIFHRIBIEIFIFIEIRITRERREEIRRERERRERRRSR

ifelse(<condition>, v1, v2) # can return a vector

H H H oW W B W W R W W R R

H oW W B W W R W W R R

HHHHFHFHFIIRRIRERIERRRRESR

Data type conversion

b <- c(1, 2, 2, 2, 3, 1, 1, 4, 5, 4)
b.as.factor <- as.factor(b)

Levels(b.as. factor)

e.g., <dataframe> <- as.data.frame(<matrix>)
str(<dataframe>)

Convert numeric to factor:
<dataframe>$<numeric column with few different values> <-
factor(<dataframe>$<numeric column with few different values>,
Levels = c(o, 1, ..., R), labels = c("<l1>", "<lL2>", ..., "<lk>"))

Attributes of R objects (dataframes, matrices, factors, Llists, tables...)
attributes(<dataframe> | <matrix> | <factor> | <list> | table [...)

Tables

The table() function:

table(<var>) # typically a factor or an integer var
The prop.table() function:

prop.table(table(<var>))
round(prop.table(table(<var>)), digits = <n>)

Row and column margins:

table(<varl>, <var2>)

table(<rows title> = <varl>, <columns title> = <var2>)
prop.table(table(<varl>, <var2>), margin = 1)
prop.table(table(<varl>, <var2>), margin = 2)

<varl>, <var2>: usually factors or integers

add common titles for rows/columns

all row margins (sums of values by row) are 1.0

all column margins (sums of values by column) are 1.0

Vectors

Differences in initializing vectors and dataframe columns:

<vector> <- rep(<value>, <times>)

<vector> <- <value>

<dataframe>$<column> <- rep(<value>, <times>)

<dataframe>$<column> <- <value>

Length of a vector:

Length(<vector>)

Counting the number of elements with the values of <x> in a vector:
1. <table> <- table(<vector>)

<table>
<table>["<x>"], or <table>[names(<table>) == <x>]
2. sum(<vector> == <x>)

3. Length(which(<vector> == <x>)) # which() 1s Like WHERE in SQL

HHEHFRIFIHRIIFRIEIERITREIEIRRERERRERSR

H B R R RHR

HHEHRIFHEIEIRRERERIERRRSR

Appending an element to a vector:
<vector> <- c(<vector>, <element>) # type conversion occurs if <element> is of different type than v[i]
<vector> <- append(<vector>, <element>) # type conversion occurs if <element> 1is of different type than v[i]
<vector> <- append(<vector>, <element>,
after = <n>) # insert <=> append at a desired location
<vector> <- append(<vector>, NA)
Removing NAs from a vector in NA-sensitive functions:
<function>(<vector>, na.rm = TRUE)
Selecting items matching criteria from a numeric vector (added check for NAs and NaNs):
<numeric vector> <- c(<nl>, <n2>, <n3>, ..., NA, ...NaN)
<selected> <- <numeric vector>[<logical criterion> & !is.na(<numeric vector>)] # is.na() is TRUE for both NA and NaN
is.na() is the only way to test if <something> is NA (<something> == NA does not work)
Range of a numeric vector:
range(<vector>)
Create numeric vector with <length> elements:
<vector> <- vector(mode = "numeric", Llength = <length>)
Number of unique values in a vector:
unique(<vector>)
Check if numeric variables follow normal distribution:
summary (<numeric variable>) # the mean and the median values similar: probably normal distribution
plot(density((<numeric variable>)) # visual 1inspection
hist(<numeric variable>, breaks = <n>) # visual inspection; <n>: number of bins in the histogram
ggnorm(<numeric variable>) # values Lie more or Lless along the diagonal (straight Line)
shapiro.test(<numeric variable>) # good for small sample sizes, e.g. n < ~2000; HO: normal distribution
Discretizing numeric variables (using bnlearn::discretize()):
Library(bnlearn)
?discretize()
<new dataframe with discretized variables> <-
discretize(<numeric dataframe>, # <original dataframe>[, c(<num. col. 1>, <num. col. 1>, ...]
method = "quantile" | # use equal-frequency intervals (default)
method = "interval"”, # use equal-Llength intervals
breaks = c(<nl>, <n2>, ..., <ncol>)) # no. of discrete intervals for each column
Discretizing numeric variables (using base: :cut())
<dataset>$<new factor feature> <-
cut(<dataset>$<numeric feature>,
breaks = <n>, # number of intervals to cut the <numeric feature> into
Labels = c("<lab 1>", "<lab 2>", ..., "<lab n>")) # factor Labels

H OB R HHRIFHRRERRRIRHR HHRRIFRHRREHR H H

B R R

**

HHRIFHRRERRRIRHR

Scatterplot matrices (useful for examining the presence of Linear relationship between several pairs of variables):

pairs(~<x1> + <x2> + ..., data = <dataframe>)
Data normalization:
Library(clusterSim)
<dataframe with numeric columns> <-
data.Normalization(<dataframe with numeric columns>,
type = "n4",

normalization = "column")

Correlation plots:
<numeric dataframe> <-
data.frame(<num col 1 name>
<num col 2 name>
..)
<correlation matrix> <- cor(<numeric dataframe>)
Library(corrplot)
corrplot.mixed(<correlation matrix>, tl.cex =

<dataframe>$<num col 1>,
<dataframe>$<num col 2>,

Quantiles/Percentiles:
<quantiles> <- quantile(<dataset>$<column name>,
probs = seq(from = 6.0, to =
Sorting:
sort(<numeric vector>) # sort <numeric vector>

install.packages("knitr")

Library(knitr)
kable(x = <stats>, format = "rst")
ggplot2
Bar graphs:
ggplot(data = <dataframe>,
aes(x = <column 1>, y = <column 2>, fill =

geom_bar(stat = "identity") +
xlab("<x-axis Llabel>") + ylab("<y-axis label>") +
ggtitle("<graph title>")
ggplot(<dataframe>, aes(x =
geom_bar(position = "dodge", width =

<column 1>, fill =
<bin width>) +

<text font size>, number.cex =

<column 1>)) + # fill =

works with vectors and matrices as well

normalization: (x - min(x)) / (max(x) - min(x))
normalization by columns

correlations between numeric variables in the dataset

create all-numeric dataframe,
Lleave out all non-numeric columns
from the original dataframe

all-numeric dataframe

<number font size>)

examine the oth, 2.5th, ..., percentile

0.1, by = 0.025))

pretty-printing tables etc. in the console
(a set of "fancy" reporting tools)

<column 1> is optional; no y for counts
"identity" for values, "count" for counts

<column 2>)) +

"dodge": bar grouping, <bin width>: 0.2-0.6

H H

HHIFHRRIRRIIRRERERIERSR

HHIFHRRIIERIIFIEIERIRERRERERRRSR

S I I I

Labs(x = "<x-label>", y = "<y-Llabel>", title = "<title>") +
theme_bw()

Line graphs:
ggplot(data = <dataframe>,
aes(x = <column 1>, y = <column 2>, group = 1)) + # group = 1: one line, all points connected

geom_Line(colour = "<colour>", Llinetype = "<linetype>", size = <line thickness>) +
geom_point(colour="<colour>", size = <point size>, shape = <point shape>, fill = "<point fill colour>") +
xlab("<x-axis Llabel>") + ylab("<y-axis label>") +
ggtitle("<graph title>")

ALL parameters in geom_Line() and in geom point() are optional.

The defaults are: colour = "black", linetype = "solid", size = 1, shape = 21 (circle), fill = "black"

See http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/

for more information on colors.

See http://www.cookbook-r.com/Graphs/Shapes and_Line_types/

for information on shapes and Lline types.

Scatterplots:
ggplot(<dataset>, aes(x = <num.var.1>, y = <num.var.2>)) +
geom_point(shape = <n>, # <n> = 1: hollow circle
fill = <color 1>, # color of point fill (optional)
color = <color 2>, # color of point Line (optional)
size = <s>) + # size of point Line (optional)
geom_smooth(method = Lm, # add regression Line (optional); 1if Lleft out, nonlinear best-fit Line is shown
se=FALSE) # do NOT show 95% confidence region as a shaded area (optional)
<scatterplot> <-
ggplot(<dataset>, aes(x = <num.var.1>, y = <num.var.2>)) +
geom_point(shape = <n>, # <n> = 1: hollow circle, no fill; <n> = 21: circle that can be filled
fill = <color 1>, # color of point fill (optional)
color = <color 2>, # color of point Line (optional)
size = <s>) # size of point Line (optional)
<scatterplot> <- <scatterplot> + xlab("<x Label>") # Label/caption on x-axis
<scatterplot> <- <scatterplot> + ylab("<y Label>") # Label/caption on x-axis
<scatterplot> <- <scatterplot> + ggtitle("<scatterplot title>") # scatterplot title
Boxplots:
boxplot(<dataset>$<column name>, xlab = "<column name>") # basic boxplot for <column name>
boxplot.stats(<dataset>$<column name>) # returns the stats used for drawing a boxplot
ggplot(<dataset>, # ggplot2 boxplots
ages(x = "", y = <column name>, fill = "<color>")) + # show boxplot of <column name>
geom_boxplot(width = 6.5) + # boxplot width

stat_boxplot(geom ='errorbar', width = 0.15) + # show whiskers, control their width

guides(fill = FALSE) + # no legend (it makes no sense here)

xlab("") # no x-axis Llabel (it makes no sense here)
Histograms:

ggplot(data = <dataset>, mapping = aes(x = <column name>)) +

geom_histogram(bins = <nbins>,

fill = "<fill color>",

color = "<line color>")

Density graphs:

ggplot(data = <dataset>,

mapping = aes(x = <num. var.>, fill = <fill var.>)) +

geom density(alpha = <value>) + # alpha: plot transparency (©-1, optional)
theme_bw()

HHHHAH

ML

HHHHAH

Model building and examination:

<model> <- Lm(<y> ~ <x1> + <X2> + ..., # build/fit the model over the <dataset>;

data = <dataset>) # <x> and <y> are numeric variables from <dataset>

<model > # show the model

coef(<model>) # show the coefficients of the Linear model (intercept and slope)

confint(<model>) # show the confidence intervals for the estimated intercept and slope

summary(<model>) # show the model statistics

Library(rpart)

<model> <- rpart(<output variable> ~ # build the tree

<predictor variable 1> + <predictor variable 2> + ..., # . to include all variables
data = <train dataset>,

method = "class"”, # build classification tree
control = rpart.control(minsplit = <n>, cp = <q>)) # decrease both for Larger tree
Library(rattle)

Library(rpart.plot)

Library(RColorBrewer)

fancyRpartPlot(<decision tree>)

<model> <- kmeans(x = <normalized dataframe>,

centers = <R>, # K = <RkR>

iter.max = <i>, # max number of iterations allowed, e.g. 20

nstart = <n>) # no. of initial configurations, e.g. 1000 (report on the best
one)

Library(elo71)

Library(caret)

<folds> = trainControl(method = "cv", number = <k>) # define <R>-fold cross-validation parameters

<cpGrid> = expand.grid(.cp = # specify the range of the cp values to examine
seq(from = <start value>, to = <end value>, by = <step>))

train(<output variable> ~ # find the optimal value for cp

<predictor variable 1> + <predictor variable 2> + ..., # . to include all variables

data = <train dataset>,

method = "rpart"”, # use rpart() to build multiple classification trees
control = rpart.control(minsplit = <min split>), # default <min split> is 20

trControl = <folds>, tuneGrid = <cpGrid>) # <folds> and <cpGrid> from above

<prunned model> <- prune(<model>, cp = <optimal cp value>)

Library(class)

<model> <- knn(train = <training dataset>, # training data without the output (class) variable

test = <test dataset>, # test data without the output (class) variable

cl = <class values for training>, # output (class) variable 1is specified here

kR = <n>) # <n>: random guess, or obtained from cross-validation

Library(elo71)

P’naiveBayes

<model> <- naiveBayes(<output variable> ~ ., # include all predictors from the training set

data = <training dataset>)

<model> <- naiveBayes(<output variable> ~

var 1> + <var 2> + ..., # include only selected predictors from the training set
data = <training dataset>)

Multicolinearity:

Library(car)

vif(<model>)

sqrt(vif(<model>)) # variables with sqrt(vif) > 2 (2.5 - disagreement) are problematic

H R R R

Making predictions:
<predictions> <- predict(<model>,
<test dataframe>,
interval = "confidence" | # include the confidence 1interval for the predictions (optional; used

only in Llinear regression)

#
#
#
#

"predict") # include prediction intervals (optional)
<predictions> <- predict(object = <decision tree>,
newdata = <test dataset>,
type = "class") # for classification task

H oW OB R HHIFHRRIRERIERIRRER

HHHHFHFHFIIRRIRERIERRRRESR

H oW W R W OB R R

<predictions> <- predict(object = <NB model>,
newdata = <test dataset>,
type = "raw" # compute probabilities, not classes
<predictions>[<il1>:<ik>] # examine some of the predictions
<predictions dataframe> <-
data. frame(<observation ID> = <test dataset>$<observation ID column>,
<another relevant feature> = <test dataset>$<another relevant feature column>,
ey
<output feature> = <test dataset>$<output variable>,
<predictions feature> = <predictions>)

Diagnostic plots:

par(mfrow = c(2,2)) # set up the plotting panel for 4 graphs
plot(<model>) # plot the 4 graphs
par(mfrow = c(1,1)) # reset the plotting panel

R-squared and RMSE:
Compute R-squared on the test data for a model:
R-squared = 1 - RSS/TSS, where RSS is the residual sum of squares, and TSS is the total sum of squares
<predictions RSS> <-
sum((<predictions> - <test dataset>$<output variable>)"2)
<predictions TSS> <-
sum(mean(<train dataset>$<output variable>) - <test dataset>$<output variable>)"2)
<R-squared> <- 1 - <predictions RSS> / <predictions TSS>
<R-squared>
Compute Root Mean Squared Error (RMSE) for a model on the test data
to see how much error we are makRing with the predictions:
RMSE = sqrt(RSS/n)
<predictions RMSE> <- sqrt(<predictions RSS> / nrow(<test dataset>))
<predictions RMSE>

ROC curve (Receiver Operating Characteristic)
Library(pROC)
<ROC curve parameters> <- # compute ROC curve parameters
roc(response = <test dataset>$<output variable>,
predictor = <predicted probabilities>[, <1 | 2>]) # col. no. of the "positive class" (can be the No class!)
<ROC curve parameters>$auc # extract and show AUC
plot.roc(<ROC curve parameters>, # computed in the previous step
print.thres = TRUE, # show the probability threshold (cut-off point) on the plot

HHEHRIFREIERRIERSR

HOH HHHHBFHRIRERIRIFRRERRRR

print.thres.best.method =

"youden" |[# maximize the sum of sensitivity and specificity (the distance to the diag. Lline)
"closest.topleft"”) # minimize the distance to the top-left point of the plot
<ROC coords> <- coords(<ROC curve parameters>, # computed in the previous step
ret = c("accuracy”, "spec", "sens", "thr", ...), # ROC curve parameters to return
X = # the coordinates to Look for:
"Local maximas" | # Llocal maximas of the ROC curve
"best" [...) # the point with the best sum of sensitivity and specificity, 1i.e.

the same as the one shown on the ROC curve

Compare multiple clustering results/schemes:
install.packages("fpc")

Library(fpc)
?cluster.stats
<comparison criteria> <- # specify criteria (from cluster.stats()) for comparing
c("<criterion 1>", # different clusterings (e.g., "max.diameter", "min.separation"”,
"<criterion 2>", ...) # "average.between", "average.within", "within.cluster.ss", ...)

<distance matrix> <-
dist(x = <normalized dataset>)
<comparison> <- sapply(list(<clustering 1 name> <clustering 1>, # <clustering 1> computed by kmeans()
<clustering 1 name> = <clustering 2>, # <clustering 2> computed by kmeans()
FUN = function(x)
cluster.stats(<distance matrix>, x))[<comparison criteria>,]
install.packages("knitr") # pretty-printing tables etc. in the console
Library(knitr) # (a set of "fancy" reporting tools)
kable(x = comparison, format = "rst")

