
Assignment 1 – 2011

Create public class FilmFestivalException, which represents an unchecked exception (extends the RuntimeException
class) and has:
! Public constructor that receives, as its input parameter, an error message and passes this parameter to the constructor

of the parent class.

Create public class FilmFestival with the following elements:
! Private attribute name with the initial value null.
! Private attribute location with the initial value null.
! Private attribute numberOfVisitors representing the number of people who visited the film festival.
! Get and set methods for all the attributes. The name and the location attributes cannot be null nor empty string, while

the number of participants has to be either zero or a positive number. In case of invalid parameter value, a
FilmFestivalException, with an appropriate error message, should be thrown.

! Redefined toString method (of the Object class) so that it returns a piece of text with all the data about the film
festival. If the number of visitors is equal to zero, the method should return a message (string) with the festival name
and location only.

! Redefined equals method (of the Object class). First, it should be checked if the method’s input is an object of the
FilmFestival class; if it is not, a FilmFestivalException, with an appropriate error message, should be thrown. If the
input is a FilmFestival object, the method returns true, if name and location of the festival are equal to the name and
the location of the input FilmFestival object; if these are not equal, the method returns false.

Create public class FilmFestivalSeason with:
! Private attribute festivals representing a list of objects of the FilmFestival class.
! Public constructor without input parameters; the constructor initializes the festivals list.
! Public method that writes to the text file “report.txt” data about each film festival (from the festivals list) with more

than 100 visitors. Data about each film festival should be written in a separate row.
! Public method that reads from the keyboard the data about one film festival, and adds the new festival to the list. The

new festival should be added to the list only if the same festival is not already in the list. In case of an error occurring
while reading the data, that is, if an exception is thrown, the exception should be caught and its message should be
printed in the console.

! Public method that receives, as its input parameter, a list of the FilmFestival objects. This is a list of festivals from
the previous season. The method writes to the “popular_festivals.txt” text file data about those festivals that were
held both this and the previous season, and in this season had more visitors than in the previous season. Note that the
number and order of festivals in the two lists may differ.

Assignment 5 – 2011

Create public class CityException that represents an unchecked exception (extends the RuntimeException class) and has:
! Public constructor that receives, as its input parameter, an error message and passes this parameter to the constructor

of the parent class.

Create public class City that can be serialized, and has:
! Private attribute name with the initial value “unknown”.
! Private attribute population that represents the number of citizens in the given city; its initial value is zero.
! Get and set methods for these two attributes. Invalid values for the attribute name include null and any String with

less than two letters. The city’s population has to be greater than zero. In case of an invalid value, a CityException,
with an appropriate error message, should be thrown.

! Redefined equals method (of the Object class). The method first checks if its input is an object of the City class; if it
is not, a CityException, with an appropriate error message, should be thrown. If the input is a City object, the method
returns true, if name of the city is equal to the name of the input City object; if these are not equal, the method
returns false.

Create visual class CitiesGUI that looks like the one shown on Figure 1. The title of the window should be “CitiesGUI”.
Set the window in such a way that its size cannot be changed by the user.
! The CitiesGUI class should have private attribute cities that represents a list of objects of the City class; the list

should be initialized right away.

! When the Delete button is pressed, the content of both input fields should be deleted.
! When the Save button is pressed, data about all the cities in the list should be written (serialized) into 3 files:

“small_cities.out”, “midsize_cities.out”, and “big_cities.out”, depending on the cities’ population. Cities with less
than 100 000 citizens are considered small; midsize cities have between 100 000 and 1 million citizens; big cities are
those with over 1 million citizens.

! When the Add button is pressed, the data about the name and the population of a new city should be taken from the
input fields and the new city should be added to the list. The new city is added only if the list doesn’t already contain
the same city. The new city, if not in the list, should be added to it in such a way that the descending order based on
the cities’ population is preserved in the list. If the list already contains the same city or an exception is thrown while
entering or transforming the data, the word “ERROR” should be written in both text fields.

Figure 1. CityGUI

Assignment 6 – 2011

Create public class CityException that represents an unchecked exception (extends the RuntimeException class) and has:
! Public constructor that receives, as its input parameter, an error message and passes this parameter to the constructor

of the parent class.

Create public class City that can be serialized, and has:
! Private attribute name.
! Private attribute population that represents the number of citizens in the given city.
! Get and set methods for these two attributes. Invalid value for the attribute name is null, while the city’s population

has to be greater than zero. In case of an invalid value, a CityException, with an appropriate error message, should be
thrown.

! Redefined method toString (of the Object class) that returns a piece of text (String) with all the data about the city, in
the following format: “CITY NAME: #### POPULATION: ###”.

Create visual class CitiesGUI that looks like the one shown on Figure 2. The window title should be “List of cities”, and
the central part of the window should contain text editor. When a user resizes the window, the central part (with the text
editor) should be enlarged/shrunk, while the other components should stay unchanged (see Figure 3).
! The CitiesGUI class should contain private attribute cities that represents a list of objects of the City class; the list

should be initialized right away.
! When the “Exit” button is pressed, the program should be terminated.
! When the “Load” button is pressed, data about cities should be loaded from two files: “archive1.out” and

“archive2.out”, and the loaded cities should be used to fill in the cities list, but without repetition (if the same city
appears in both files, it should be added to the list just once). Before loading the data from the files, the list should be
cleared.

! When the “Print” button is pressed, data about three cities (from the list) with the largest population should be
printed in the editor. The data about each city should be printed in a separate row. If the list is empty, message “List
is empty” should be printed in the editor.

	
Figure 2. CitiesGUI (regular size)
	

	
Figure 3. CitiesGUI (enlarged)
	
	
Assignment 7 – 2011
	
Create public class WaterPoloClubException that represents an unchecked exception (extends the RuntimeException
class) and has:
! Public constructor that receives, as its input parameter, an error message and passes this parameter to the constructor

of the parent class.

Create public class WaterPoloPlayer that has:
! Private attribute fullName; value of this attribute is always in the format “NAME SURNAME”.
! Private attribute position, which represents the position of the player in the game (e.g., goalkeeper, quarterback)
! Private attribute score that represents the total number of points the player scored during a game.
! Get and set methods for these three attributes. Invalid values for the fullName and the position attributes include null

and empty strings, while the score has to be either zero or greater than zero. In case of an invalid value, a
WaterPoloClubException, with an appropriate error message, should be thrown.

! Redefined equals method (of the Object class). The method first checks if its input is an object of the
WaterPoloPlayer class; if it is not, a WaterPoloClubException, with an appropriate error message, should be thrown.
If the input is a WaterPoloPlayer object, the method returns true, if full name of the water polo player is equal to the
full name of the input WaterPoloPlayer object; if these are not equal, the method returns false.

Create visual class WaterPoloClubGUI that looks like the one shown on Figure 4. The title of the GUI window should be
“Water polo club”. Set the window in such a way that users cannot change its size. The dropdown list should have the
following items: “goalkeeper”, “wing”, “quarterback”, “anchor”, and “center”.

! The WaterPoloClubGUI class should contain private attribute players, which is a list of objects of the
WaterPoloPlayer class. The list should be initialized right away.

! When the “Delete” button is pressed, the content of all the input fields (except the dropdown list) should be deleted.
! When the “Save” button is pressed, data about all the water polo players (from the players list) should be written into

two files “goalkeepers.out” and “players.out”. In the first file (“goalkeepers.out”), only the data about the
goalkeepers should be written, while the second file (“players.out”) should store the data about all the other players
from the list. In both cases, data about each player should be written in a separate row, in the following format:
<full_name><tab><position><tab><score>.

! When the “Add” button is pressed, all the data about a water polo player should be collected from the input fields of
the GUI, and a new instance of the WaterPoloPlayer should be created and added to the list. The new player should
be added only if the list doesn’t contain the same player. The new player, if not in the list, should be added to it in
such a way that the descending order based on the players’ scores is preserved in the list. If the list already contains
the same player or an exception is thrown while entering or transforming the data, the word “ERROR” should be
added to the title of the GUI window.

	
Figure 4. WaterPoloClubGUI

Assignment 4 – 2012

Create public class HRException that represents a checked exception (extends the Exception class) and has:
! Public constructor that receives, as its input parameter, an error message and passes this parameter to the constructor

of the parent class.

Create public class Employee that can be serialized and has the following elements:
! Private attribute fullName.
! Private attribute age.
! Private attribute yearsEmployed that represents the number of years the given person has been employed.
! Private attribute gender that can take one of the following two values: ‘f’ for females, and ‘m’ for males.
! Get and set methods for these attributes. Invalid values for the fullName include null and strings containing more

than 20 characters, while the age and the yearsEmployed attributes have to be either zero or greater than zero. The
only allowed values for gender are ‘f’ and ‘m’. In case of an invalid value being entered, an HRException, with an
appropriate error message, should be thrown.

! Redefined method toString (of the Object class) that returns a piece of text (String) with all the data about the
employee; the text should be formatted in such a way that after each employee attribute, there is one “tab” sign.

! Redefined equals method (of the Object class). The method returns true if the full name and the age of the employee
are equal to the full name and the age of the input Employee object; if any these attributes are not equal, the method
returns false.

Create public class HRSystem that has:
! Private attribute employees, which is a list of objects of the Employee class; the list should be initialized right away.

! Public method that writes to the “report.out” file data about those employees who should be given jubilee salary; the
data should be written in the following format: <full_name><years_employed>. The employees who are granted the
jubilee salary are those who have been employed for at least 10 years.

! Public method that serializes to the “near_pension.out” file data about those employees who are ready for pension.
Those are male employees with at least 65 years of age or at least 40 years of employment, as well as female
employees with at least 60 years of age or at least 35 years of employment. In addition, the method should print to
the screen the total number of employees who are ready for pension.

! Public method that reads from the keyboard data about one employee and adds him/her to the list. In case of an error
(exception) occurring while reading the value for any of the employee attribute, an error message should be printed
to the screen, and another attempt should be made at reading the value of that attribute.

Assignment 5 – 2012

Create public class DemographyException that represents an unchecked exception (extends the RuntimeException class)
and has:
! Public constructor that receives, as its input parameter, an error message and passes this parameter to the constructor

of the parent class.

Create public class Region that can be serialized and has the following elements:
! Private attribute name.
! Private attribute birthRate that represents the total number of children born since the latest census.
! Private attribute deathRate that represents the total number of people who died since the latest census.
! Private attribute migrationBalance that represents the change in the population size due to migration (it is an integer

value)
! Get and set methods for these attributes. Invalid values for the name attribute include null and strings containing less

than 2 letters, while the birthRate and the deathRate attributes have to be greater than zero. In case of an invalid
value being entered, a DemographyException, with an appropriate error message, should be thrown.

! Redefined toString method (of the Object class). The method returns a piece of text (String) with all the data about
the region. The text to be returned should also contain information about the change in the population size, which is
computed as follows: change = birthrate – death rate + migration balance.

Create visual class RegionsGUI that looks like the one shown on Figure 5. The title of the GUI window should be
“Regional demographic data”, and the central part of the window should contain text editor. When a user resizes the
window, the central part (with the text editor) should be enlarged/shrunk, while the other components should stay
unchanged.
! The RegionGUI class should contain private attribute regions, which is a list of objects of the Region class; the list

should be initialized right away.
! When the “Delete” button is pressed, the content of all the text fields and the text area should be deleted.
! When the “Save” button is pressed, all the elements of the regions list should be written (serialized) into one of these

two files: “growing_regions.out” and “dying_regions.out”, depending on the change in the population size (this
change is computed using the formula: change = birthrate – death rate + migration balance). Those regions where the
change is positive should be written into the first file, while the others should be written to the second file.

! When the “Add” button is pressed, all the data about a region should be collected from the input fields of the GUI,
and a new instance of the Region should be created and added to the list. The new region should be added only if the
list doesn’t contain the same region. The new region, if not in the list, should be added to it in such a way that the
descending order based on the regions’ birthrate is preserved in the list. If the list already contains the same region or
an exception is thrown while entering or transforming the data, the word “ERROR” should be printed in the text
editor.

Figure 5. RegionsGUI

Assignment 3 – 2012

Create public class StatisticsException that represents a checked exception (extends the Exception class) and has:
! Public constructor that receives, as its input parameter, an error message and passes this parameter to the constructor

of the parent class.

Create public class Household that can be serialized and has:
! Private attribute location representing the name of the place where the household is located
! Private attribute grownupsNum that represents the number of grownups in the household
! Private attribute childrenNum that represents the number of children in the household.
! Private attribute monthlyIncome that represents the amount of the total monthly income of the household in dinars.
! Get and set methods for these attributes. Invalid values for the location attribute include null and strings with less

than 5 or more than 13 characters; the other three attributes must be either zero or greater than zero. In case of an
invalid value being entered, a StatisticsException, with an appropriate error message, should be thrown.

! Redefined method toString (of the Object class) that returns a piece of text (String) with all the data about the
household; the text should be formatted in such a way that after each household attribute, there is one “tab” sign.

! Redefined equals method (of the Object class). The method returns true if values of all the attributes of the
household are equal to the values of the corresponding attributes of the input Household object; if any these
attributes are not equal, the method returns false.

Create class HouseholdsStatistics with the following elements:
! Private attribute households, which represents a list of objects of the Household class.
! Public constructor with no input parameters, which initializes the households list.
! Public method that writes to the data file “households_without_income.out” data about the households with zero

monthly income; the data about each such household should be written in the following format:
<location><grownups_number><children_number>. If the households list is empty, an exception of the type
StatisticsException should be thrown.

! Public method that creates a report based on the data stored in the households list and writes this report to the file
“report.txt”. The report should contain the total number of households, the average monthly income per household,
the average number of grownups per household, the average number of children per household, as well as the
average monthly income per household member (including both grownups and children).

! Public method that reads data about several households and adds them to the list. The number of households to be
added is read (entered by the user) at the first input. In case of an error (exception) occurring while reading the data
for a household, an error message should be printed to the screen, and another attempt should be made at reading the
data for that household.

Assignment 8 – 2012

Create public class EmployeeException that represents an unchecked exception (extends the RuntimeException class) and
has:
! Public constructor that receives, as its input parameter, an error message and passes this parameter to the constructor

of the parent class.

Create public class Employee that can be serialized and has:
! Private attribute fullName.
! Private attribute age.
! Private attribute yearsEmployed that represents the number of years the employee has been employed.
! Private attribute female with value TRUE if the employee is female, and FALSE if the employee is male.
! Get and set methods for these attributes. Invalid values for the fullName include null and strings with more than 20

characters, while the age and the yearsEmployed attributes have to be either zero or greater than zero. In case of an
invalid value being entered, an EmployeeeException, with an appropriate error message, should be thrown.

! Redefined method toString (of the Object class) that returns a piece of text (String) with all the data about the
employee; the text should be formatted in such a way that after each employee attribute, there is one “tab” sign.

Create visual class EmployeesGUI that looks like the one shown on Figure 6a. The title of the GUI window should be
“Employees”, and the central part of the window should contain text editor. When a user resizes the window, the central
part (with the text editor) should be enlarged/shrunk, while the other components should stay unchanged (Figure 6b). The
dropdown list should have two items: “male” and “female”.
! The EmployeeGUI class should contain private attribute employees, which is a list of objects of the Employee class;

the list should be initialized right away.
! When the “Delete” button is pressed, the content of all the text fields and the text area should be deleted.
! When the “Load” button is pressed, data about employees should be read (deserialized) from a file; the name of the

file (to be used for deserialization) should be read from the text editor; once deserialized, the objects should be added
to the employees list. After deserialization, the content of the employees list should be written in the text editor.

! When the “Add” button is pressed, all the data about an employee should be collected from the input fields of the
GUI, and a new instance of the Employee class should be created and added to the list. The new employee should be
added only if the list doesn’t contain the same employee. If an exception is thrown while entering or transforming
the data, the word “ERROR” should be written into the appropriate input field (for instance, if -1 is entered as the
value for the years of employment, “ERROR” should be written into the text field for entering the years of
employment).

Figure 6a. EmployeesGUI (initial size)

Figure 6b. EmployeesGUI (after being enlarged)

