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WHAT IS CLUSTERING? 

Clustering is an unsupervised learning task 
§  its input is a set of instances (described with a set of 

attributes) to be grouped based on their similarity 
§  there is no data about the desired/correct group for any of 

the input instances 



WHAT IS CLUSTERING? 
It is about grouping instances in such a manner that for each 
instance the following is true:  

§  the instance is more similar to the instances from its group 
(cluster), than to instances from other groups (clusters) 

Similarity between instances is computed using certain 
§  similarity measure (e.g., Cosine similarity), or  
§  distance measure (e.g., Euclidian distance) 

Cosine 
similarity 



WHAT IS CLUSTERING? 
Unlike the classification task, for this task, there is no 
unique “correct” or best solution 

§  how good/suitable a solution is, that depends upon the 
specific domain and the application case  
§  the same solution might be differently evaluated in different 

application cases 

§  if it is to be done properly, domain experts need to evaluate 
the solution(s) produced by the model 



An example illustrating 
different valid solutions for 
the same input dataset 



APPLICATION DOMAINS 
§  Market segmentation 

§  Detection of groups/communities in social networks 

§  Identifying patterns in user tracking data -> allow for 
learning about the ways people use an application 

§  Grouping of objects (e.g., images or documents) based 
on their common characteristics 

§  … 

 

 



K-MEANS 
ALGORITHM 



K-MEANS 

One of the simplest and the most widely known and used 
clustering algorithm 

It can be best understood through examples, so we will first 
have a look at an example 

The example is taken from the course: https://www.coursera.org/course/ml  



K-MEANS: AN EXAMPLE 

Let’s suppose the diagram 
presents the input data 

(i.e., a set of instances), 
described with 2 attributes 

(shown on x and y axes) 



K-MEANS: AN EXAMPLE 

Initialization:  
Initial random selection of 

cluster centroids (K = 2) 



K-MEANS: AN EXAMPLE 

Iteration 1, Step 1: 
Assigning instances to 

one of the clusters based 
on their distance from 
the clusters’ centroids 



K-MEANS: AN EXAMPLE 

Iteration 1, Step 2: 
Computation of a new 

centroid for each 
cluster, by averaging 

the values of instances 
within the cluster 



K-MEANS: AN EXAMPLE 

Iteration 2, Step 1:  
Re-assignment of 

instances across the 
clusters based on their 

distance from the (new) 
cluster centroids 



K-MEANS: AN EXAMPLE 

Iteration 2, Step 2: 
Re-calculation of 
cluster centroids  



K-MEANS: AN EXAMPLE 

Iteration 3, Step 1:  
Re-assignment of 
instances across 

the clusters  



K-MEANS: AN EXAMPLE 

Iteration 3, Step 2:  
Re-calculation of 
cluster centroids 



K-MEANS: AN EXAMPLE 

The algorithm is converging:  
additional iterations will not 

lead to any significant 
change; the process 

terminates 



K-MEANS: THE ALGORITHM 
Input: 
§  K – the number of clusters 
§  (unlabeled) training set with m instances; each instance in this set 

is described with a vector of n attributes (x1, x2, …, xn) 
§  max - max number of iterations (optional parameter) 

 



K-MEANS: THE ALGORITHM 
Steps: 
1)  Initial, random selection of a centroid for each cluster 

§  centroids are chosen from the training set, i.e., K instances are 
randomly taken from the training set and set as centroids 

2)  Repeat:  

1)  Cluster assignment: for each instance i from the training set, 
i = 1,m, identify the closest centroid and assign the instance 
to the corresponding cluster 

2)  Repositioning of centroids: for each cluster, compute a new 
centroid by averaging the values of instances assigned to 
that cluster  

       until the algorithm starts converging or the number of iterations    
 reaches max 



K-MEANS: THE COST FUNCTION 

The objective of the K-means algorithm is to minimize the 
cost function J: 

x(i) – i-th instance in the training dataset, i=1,m 

c(i) –  index of the cluster to which the instance x(i) is currently assigned 

µj – centroid of the cluster j, j=1,K 

µc(i) – centroid of the cluster to which the instance x(i) has been assigned 

This function is also known as distortion function 



K-MEANS: THE COST FUNCTION 

K-means algorithm minimizes the cost function J in the 
following manner: 
§  the Cluster assignment phase minimizes J with respect to c(1),
…,c(m), holding µ1,…, µK fixed 

§  the Repositioning of centroids phase minimizes J with respect to 
µ1,…, µK, holding c(1),…,c(m) fixed 



K-MEANS: EVALUATION 
Criteria for evaluating the “quality” of the resulting clusters: 

§  Distance between the centroids 
§  the more distant the centroids are, the lower is the overlap between 

the clusters, and thus their quality is higher 

§  St. deviation of instances from the centroid 
§  the lower the st. deviation, the more tightly grouped are the 

instances, and thus, the clusters are considered better 

§  Within cluster sum of squared errors 
§  a quantitative measure for estimating the quality of the clusters 
§ we will consider it through an example (slide 23) 



K-MEANS:  
INITIAL SELECTION OF CENTROIDS 

§  Depending on how initial cluster centroids were chosen, the K-
means algorithm would converge quicker or slower 

§  “Unlucky” selection of initial centroids may lead K-Means to get 
stuck in the so called local optima and produce poor results 
§  this is a local minimum of the cost function 

“Lucky” initialization “Unlucky” initializations that lead to a local minimum 



K-MEANS:  
MULTIPLE RANDOM INITIALIZATIONS  

It allows for avoiding situations that lead K-means in a local minimum 

Consists of the following: 

for	
  i	
  =	
  1	
  to	
  n	
  {//n	
  is	
  often	
  in	
  the	
  range	
  50-­‐1000	
  
Randomly	
  select	
  the	
  initial	
  set	
  of	
  centroids;	
  
Apply	
  the	
  K-­‐Means	
  algorithm;	
  
Compute	
  the	
  cost	
  function	
  

}	
  	
  
Choose	
  the	
  instance	
  of	
  the	
  algorithm	
  that	
  produces	
  the	
  
lowest	
  value	
  of	
  the	
  cost	
  function	
  

This approach gives good results if the number of clusters is relatively 
low (2 - 10); should not be used if the number of clusters is higher 

Another option: K-means++ algoritam  



K-MEANS: HOW TO CHOOSE K ?  

How to determine the number of clusters K? 
§  In case we have domain knowledge about the phenomenon 

described by the data 
§  Make an assumption about the number of clusters (K) based on 

the domain knowledge 
§  Test the model with K-1, K, K+1 clusters and compare the error* 

§  If we lack domain knowledge about the studied phenomenon 
§  Start with a small number of clusters and in multiple iterations 

test the model by incrementally increasing the number of clusters 
§  In each iteration, compare the error* of the current and the 

previous model, and when the error reduction becomes 
insignificant, terminate the process 

*E.g., within cluster sum of squared errors can be used for the comparison 



K-MEANS: HOW TO CHOOSE K ?  

Optimal value 
for K 

Source: http://i.stack.imgur.com/BzwBY.png   

When we lack domain knowledge about the studied phenomenon 



K-MEANS: AN EXAMPLE IN WEKA 

The example we will see is taken from an article, published 
at the IBM Developer Works Web site: 

http://www.ibm.com/developerworks/library/os-weka2/   



EXPECTATION 
MAXIMIZATION (EM) 
ALGORITHM 



PROBABILISTIC CLUSTERING 
EM is used for probabilistic clustering 

From a probabilistic perspective 
§  instances should not be placed categorically in one cluster or 

the other,  
§  instead, they have a certain probability of belonging to each 

cluster 

The rationale: no finite amount of evidence is enough to 
make a completely firm decision on how to do the clustering 



FINITE MIXTURES MODEL 
The foundation for statistical clustering is a statistical model 
called finite mixtures  

A mixture is a set of k probability distributions, representing k  
clusters 

§ each distribution governs the attribute values for members of the 
corresponding cluster, that is,…  

§  it gives the probability that a particular instance would have a 
certain set of attribute values if it was a member of that cluster 

In addition, the clusters are not equally likely: there is a 
probability distribution that reflects their prior probability 
 

 



THE SIMPLEST FINITE MIXTURE MODEL 
The simplest finite-mixture model:  
§  instances are described with just one numeric attribute that 

has a Normal distribution in all clusters (K clusters) 

§  each cluster (Ci) has its specific mean (µi)  and st. deviation (σi) 
– i.e., parameters of the Normal distribution 

§  pi is the prior probability of the cluster Ci 

 



FINITE MIXTURE PROBLEM 
Suppose we’ve been given a set of instances that originate from a 
simplest finite mixture model with K clusters 

What we do not know are  
§  specific clusters that each instance originates from 
§  parameters of the model (µi, σi , pi , i=1,k). 

The problem of determining the parameters of this model based 
on the given set of instances is known as the finite mixture 
problem. 



EM ALGORITHM AS A SOLUTION OF THE 
FINITE MIXTURE PROBLEM 

To resolve the finite mixture problem, we can apply the 
procedure we used for the K-means algorithm: 
1)  start with initial guesses for the model parameters (µi, σi, pi, 

i=1,k) 

2)  for the given parameter values, calculate the cluster probabilities 
for each instance  

3)  use the computed probabilities to re-estimate the parameters 

Repeat steps 2) and 3) until the parameter values start to converge  

 

This procedure is a simplified description of the EM algorithm    



EM ALGORITHM 
The EM algorithm consists of 2 key steps: 
§  E (expectation) step – calculation of the cluster probabilities; 

in this step we assume that we know the values of all the 
parameters; 

§  M (maximization) step – calculation of the model parameters; 
we aim to “maximize” the likelihood of the model given the data 
available. 

These steps are repeated until the algorithm starts to converge 



EM ALGORITHM: INITIALIZATION 

The example is taken from the AI course: https://www.udacity.com/course/cs271  

Initial cluster centroids, 
based on the initial 
values of the model 
parameters 

assumption: k=2 



EM ALGORITHM: E STEP  
For each instance from the dataset xj (j=1,n), we compute 
the probability that it belongs to the cluster Ci, i=1,k 

 eij = pi * P(xj | Ci) 

P(xj|Ci) is computed using the formula of the Normal distribution 
f(x; µ, σ)  

Reminder: in this step we assume that the values of all the model 
parameters – µi, σi, pi, i=1,k – are known 



EM ALGORITHM: E STEP 

The width of a line indicates the probability that an instance 
belongs to a certain cluster, i.e., it reflects the computed eij value 



EM ALGORITHM: M STEP 
In this step, values of all the model parameters are re-computed 

pi = Σj eij / n 

µi = (Σj eij *xj)  / Σj eij 

σi
2 =  (Σj eij *(xj - µi)2) / Σj eij 

 

 



EM ALGORITHM: M STEP 

Cluster centroids change their position based on the newly 
computed values of the model parameters 



EM ALGORITHM: CONVERGENCE 
The two steps of the EM algorithm should be repeated until the 
increase in the overall log-likelihood of the model becomes 
negligible: 

 log P(x) = log Σi (pi * P(x|Ci))  

Typically, the log-likelihood will increase very sharply over the first 
few iterations, and then converge rather quickly to a point that is 
virtually stationary 



EM ALGORITHM: CONVERGENCE 

The state of convergence of the model parameters 



EM ALGORITHM 
EM algorithm is guaranteed to converge to a maximum of the log-
likelihood function 

However, this is a local maximum that may not necessarily be the 
same as the global maximum 

For a better chance of obtaining the global maximum, the whole 
procedure should be repeated several times, with different initial 
guesses for the parameter values 

At the end, we should chose the configuration that produces the 
largest overall log-likelihood 



EM ALGORITHM 
We’ve considered the simplest mixture model; but EM can be 
equally well applied to more complex mixture models 

§  Instances can be described with more than one numeric attribute 
as long as independence between attributes is assumed  
§  the probabilities for each attribute are multiplied together to obtain the 

joint probability for the instance, just as in the Naive Bayes method 

§  Attributes can be nominal, as well  
§  In that case, Normal distribution has to be abandoned  

§  nominal attribute with v  possible values is characterized by v  
numbers representing the probability of each value 



EM: AN EXAMPLE IN WEKA 
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