
Expert systems – design and
development part 2

Bojan Tomić

E-mail: bojan.tomic@fon.rs

Drools

● Link: http://www.jboss.org/drools
● Group of tools - a unique platform rule-based

systems development
– Drools Expert (desktop IDE - rule engine)
– Drools Guvnor (web-based IDE - Business Rules

Manager)
– Drools Flow (business processes)
– Drools Fusion (event processing)
– Drools Planner (automated planner)

Drools Expert

● Written in Java, free, open-source
● Uses rules and Java objects for knowledge

representation
● Forward chaining
● Development of all types of ES
● Conflict resolution strategies:
– Rule importance (salience)
– Each rule can execute only once (no-loop, lock-on-

active)

Drools Expert

● Knowledge base - DRL files
● Development tools as Eclipse plug-in
● No generic end-user GUI
● Special language for writing rules (DRL)
● Core is a Java framework
● Facts in the form of Java objects
● It easily integrates into any Java application

(direct access to Java classes)

Drools Expert - advantages

● Advantages
– Short learning curve if familiar with Java and

Eclipse
– The ability to input facts from any source via Java

objects
– Easily connect/integrate with Java applications
– Fast execution (Rete algorithm for forward

chaining [Charles Forgy, 1982])
– It can also be used for large knowledge base
– Development of all types of ES (desktop and

distributed)

Drools Expert - disadvantages

● Disadvantages
– Special language for writing rules (DRL - much like

Java)
– No predefined end-user GUI (either desktop or

web)
– No ready-made modules to connect to databases

or files – one has to use other Java frameworks
or libraries

Drools Expert - syntax

● Rules stored in textual DRL files (DRL -
Drools Rule Language)

● One file can contain multiple rules, the ES
can consist of multiple DRL files.

● DRL file structure:
package rule_package_name;

import java_class_1;
import java_class_2;
...

//rules

Drools Expert - syntax

package

● Packages are used to divide the rules into
groups if the domain is complex

● Each DRL file must belong to exactly one
package (package command is required)

● They are not Java packages ie. not
necessarily correspond to the folder name

● Example:

package financial_rules;

Drools Expert - syntax

import

● Import command is the same as in Java and
is used for importing all the Java classes that
will be used within the rules

● Example:

import finances.Report;

Drools Expert - syntax

● Comments are written as in Java with the
addition of another special comment
comment - #

● Examples:
//One line comment

One line comment

/*
Multiple line
comment
*/

Drools Expert - syntax

● Rules - syntax:

rule "name"
//rule attributes

when
//condition(LHS-Left hand side)

then
//conclusion(RHS-Right hand side)

end

Drools Expert - syntax

● Rule name can be any string, just has to be
in quotes

● Rule attributes are optional and influence the
behavior of rules (priority, period of validity
etc.).

● Rule condition (LHS) contains one or more
logical statements that resemble the logical
expressions in Java

● Rule conclusion is in the form of ordinary
Java commands

Drools Expert - syntax

● Important rule attributes:
– salience (int) - number that represents rule

importance (default value is 0)

– no-loop (boolean) - if the execution of rules amend
a fact it can cause recursive execution of the
same rule; this is prevented by setting the value
of this attribute to true (default value is false)

– agenda-group (String) - name of a rule group to
which the rule belongs - if necessary, only
certain rule groups can be activated (the default
is MAIN)

Drools Expert - syntax

● Important rule attributes:
– lock-on-active (boolean) more effective version of

the no-loop command (if another rule changes
some important fact)

– date-effective (String) - the date written in the form
of a String denoting the time before which the
rule is not considered to be active

– date-expires (String) - the date written in the form
of a String denoting the time after which the rule
is not considered to be active

Drools Expert - syntax

● Example DRL file with one rule - "all men of
the age of 40 have a mid-life crisis":

package psychology.crisis;

import data.Person;

rule "Mid-life crisis"
when

p: Person (gender == 'M', age == 40)
then

System.out.println(p.getName()+" - mid-life
crisis starts now");

end

Drools Expert - syntax

● Class Person (Java class):
package data;
public class Person {

private String name;
private int age;
private char gender;

public int getAge() {return age;}
public void setAge(int age) {this.age = age;}
public String getName() {return name;}
public void setName(String name) {this.name =
name;}

public char getGender() {return gender;}
public void setGender(char gender) {this.gender =
gender;}

}

Drools Expert - syntax

● The facts are plain Java objects (classes)
● They must meet the JavaBean standard, ie.

have get/set methods for each attribute
● For example, the String class cannot be

used by itself as a fact (as there are no get
and set methods)

● Drools Expert automatically calls the get and
set methods to retrieve attribute values

Drools Expert - syntax

● In the conditional part of a rule you can use
standard Java logical expressions (operators
"&&" and "||", but not "!")

● The previous rule could be written like this:

rule "Mid-life crisis"
when

p: Person ((gender == 'M')&&(age == 40))
then

System.out.println(p.getName()+" - mid-life
crisis starts now");

end

Drools Expert - syntax

● Rule with a complex condition:

rule "Mid-life crisis - solution"
when

p: Person (gender == 'M',age == 40)
p2: Person (gender == 'F',age > 25,age < 30)

then
System.out.println(p2.getName()+" can help "+
p.getName()+" overcome the mid-life crisis");

end

Drools Expert - syntax
● Rules with salience:
rule "Mid-life crisis"
salience 10
when

p: Person (gender == 'M', age == 40)
then

System.out.println(p.getName()+" - mid-life
crisis starts now");

end

rule "Mid-life crisis - solution"
when

p: Person (gender == 'M',age == 40)
p2: Person (gender == 'F',age > 25,age < 30)

then
System.out.println(p2.getName()+" can help "+
p.getName()+" overcome the mid-life crisis");

end

Drools Expert - syntax

● Rules can also change some facts (in the
THEN part)

● After changing any facts, the update method
must be called:

rule "John is male"
when

p: Person (name == "John", gender == 'N')
then

p.setGender('M');
update(p);

end

Drools Expert - syntax

● Drools Expert also has special operators
● Operator “exists”

rule "Are there any men age 40"
salience 11
when

exists Person (gender == 'M', age == 40)
then

System.out.println("There is at least one man
of the age 40");

end

Drools Expert - syntax

● The “forall” special operator

rule "Is every person male"
when

forall (Person(gender == 'M'))
then

System.out.println("All persons are male");
end

Drools Expert - syntax

● Starting the ES in several steps:
1.Loading the knowledge base (from DRL files)
2.Creating facts (Java objects)
3.Entering the facts into the working memory

(add objects to working memory)
4.Execute ES inference process
● Knowledge base loading is time-intensive.

Optimization - a knowledge base can be
loaded from DRL file and serialized as a
Java object

Drools Expert - syntax

● Drools Expert predefined core classes:
RuleBase (Drools 4.x) - KnowledgeBase (Drools

5.x)
WorkingMemory (Drools 4.x) -

StatefulKnowledgeSession (Drools 5.x)
PackageBuilder (Drools 4.x) - KnowledgeBuilder

(Drools 5.x)
Package (Drools 4.x) - KnowledgePackage

(Drools 5.x)

Drools Expert – Einstein's riddle

● 4 golfers standing in line next to each other
getting ready to start the game

● All players have the pants of different colors,
one of them is wearing red pants

● The player to the right of Fred has blue pants
● Joe is the second in line
● Bob has plaid pants
● Tom is not the first or the fourth in line and is

not wearing orange pants;
● The question is in what order the players will

start the game and the color of the pants of
each of them?

Drools Expert – Einstein's riddle

● This problem can be solved by using rules
● It is important that each condition is

presented in the form of rules
● After that, just let Drools Expert solve the

guessing game
● This is not an ES
● A similar problem is the problem of forming

the seating arrangements ("seating
problem"), which is used to measure an ES
shell's execution speeds

Drools Expert – Car malfunction
diagnosis

● Expert: Car mechanic
● User: Car driver
● ES replaces an expert when it comes to the

easiest problems that the user can solve by
him/herself.

● Possible solution:
● Dead battery
● Faulty starter
● Faulty electrical ignition system
● Empty fuel tank
● Faulty fuel pump
● Faulty ignition

Drools Expert – Car malfunction
diagnosis

● In a conversation with a driver who has this
problem, the mechanic usually asks the
following questions:

● Does the car crank?
● Are the lights and siren working?
● Do the lights on the dashboard ignite?
● Does the car have fuel?
● When you press the gas and crank at the

same time, does a smell of gas appear in the
car?

Explanation facility

● ES explanation
– HOW - how the ES inferred some conclusion, step

by step
– WHY - why the ES asks the user some question

● Explanation techniques
– Canned text
– Rule trace

● Increase the users level of trust in ES
conclusions

● Explanations must be adapted to the user
knowledge level

JEFF

● JEFF (Java Explanation Facility Framework)
● Free, open-source Java framework
● http://sourceforge.net/projects/jeff/
● The “HOW” explanation
● Rule trace and canned text
● Explanation in PDF, XML and TXT formats
● Explanations with natural-language like

sentences, images, data tables...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

