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Drools

● Link: http://www.jboss.org/drools
● Group of tools - a unique platform rule-based 

systems development
– Drools Expert (desktop IDE - rule engine)
– Drools Guvnor (web-based IDE - Business Rules 

Manager)
– Drools Flow (business processes)
– Drools Fusion (event processing)
– Drools Planner (automated planner)



Drools Expert

● Written in Java, free, open-source
● Uses rules and Java objects for knowledge 

representation
● Forward chaining
● Development of all types of ES
● Conflict resolution strategies:
– Rule importance (salience)
– Each rule can execute only once (no-loop, lock-on-

active)



Drools Expert

● Knowledge base - DRL files
● Development tools as Eclipse plug-in
● No generic end-user GUI
● Special language for writing rules (DRL)
● Core is a Java framework
● Facts in the form of Java objects 
● It easily integrates into any Java application 

(direct access to Java classes)



Drools Expert - advantages

● Advantages
– Short learning curve if familiar with Java and 

Eclipse 
– The ability to input facts from any source via Java 

objects 
– Easily connect/integrate with Java applications
– Fast execution (Rete algorithm for forward 

chaining [Charles Forgy, 1982])
– It can also be used for large knowledge base
– Development of all types of ES (desktop and 

distributed)



Drools Expert - disadvantages

● Disadvantages
– Special language for writing rules (DRL - much like 

Java)
– No predefined end-user GUI (either desktop or 

web)
– No ready-made modules to connect to databases 

or files – one has to use other Java frameworks 
or libraries



Drools Expert - syntax

● Rules stored in textual DRL files (DRL - 
Drools Rule Language)

● One file can contain multiple rules, the ES 
can consist of multiple DRL files.

● DRL file structure:
package rule_package_name;

import java_class_1;
import java_class_2;
...

//rules



Drools Expert - syntax

package

● Packages are used to divide the rules into 
groups if the domain is complex

● Each DRL file must belong to exactly one 
package (package command is required)

● They are not Java packages ie. not 
necessarily correspond to the folder name

● Example:

package financial_rules;



Drools Expert - syntax

import

● Import command is the same as in Java and 
is used for importing all the Java classes that 
will be used within the rules

● Example:

import finances.Report;



Drools Expert - syntax

● Comments are written as in Java with the 
addition of another special comment 
comment - #

● Examples:
//One line comment

# One line comment

/*
Multiple line
comment
*/



Drools Expert - syntax

● Rules - syntax:

rule "name"
//rule attributes

when
//condition(LHS-Left hand side)

then 
//conclusion(RHS-Right hand side)

end



Drools Expert - syntax

● Rule name can be any string, just has to be 
in quotes

● Rule attributes are optional and influence the 
behavior of rules (priority, period of validity 
etc.).

● Rule condition (LHS) contains one or more 
logical statements that resemble the logical 
expressions in Java

● Rule conclusion is in the form of ordinary 
Java commands



Drools Expert - syntax

● Important rule attributes:
– salience (int) - number that represents rule 

importance (default value is 0)

– no-loop (boolean) - if the execution of rules amend 
a fact it can cause recursive execution of the 
same rule; this is prevented by setting the value 
of this attribute to true (default value is false)

– agenda-group (String) - name of a rule group to 
which the rule belongs - if necessary, only 
certain rule groups can be activated (the default 
is MAIN)



Drools Expert - syntax

● Important rule attributes:
– lock-on-active (boolean) more effective version of 

the no-loop command (if another rule changes 
some important fact)

– date-effective (String) - the date written in the form 
of a String denoting the time before which the 
rule is not considered to be active

– date-expires (String) - the date written in the form 
of a String denoting the time after which the rule 
is not considered to be active



Drools Expert - syntax

● Example DRL file with one rule - "all men of 
the age of 40 have a mid-life crisis":

package psychology.crisis;
 
import data.Person;
 
rule "Mid-life crisis"
when

p: Person (gender == 'M', age == 40)
then

System.out.println(p.getName()+" - mid-life 
crisis starts now");

end



Drools Expert - syntax

● Class Person (Java class):
package data;
public class Person {

private String name;
private int age;
private char gender;

public int getAge() {return age;}
public void setAge(int age) {this.age = age;}
public String getName() {return name;}
public void setName(String name) {this.name = 
name;}

public char getGender() {return gender;}
public void setGender(char gender) {this.gender = 
gender;}

}



Drools Expert - syntax

● The facts are plain Java objects (classes)
● They must meet the JavaBean standard, ie. 

have get/set methods for each attribute
● For example, the String class cannot be 

used by itself as a fact (as there are no get 
and set methods)

● Drools Expert automatically calls the get and 
set methods to retrieve attribute values



Drools Expert - syntax

● In the conditional part of a rule you can use 
standard Java logical expressions (operators 
"&&" and "||", but not "!")

● The previous rule could be written like this:

rule "Mid-life crisis"
when

p: Person ((gender == 'M')&&(age == 40))
then

System.out.println(p.getName()+" - mid-life 
crisis starts now");

end



Drools Expert - syntax

● Rule with a complex condition:

rule "Mid-life crisis - solution"
when

p: Person (gender == 'M',age == 40)
p2: Person (gender == 'F',age > 25,age < 30)

then
System.out.println(p2.getName()+" can help "+ 
p.getName()+" overcome the mid-life crisis");

end



Drools Expert - syntax
● Rules with salience:
rule "Mid-life crisis"
salience 10
when

p: Person (gender == 'M', age == 40)
then

System.out.println(p.getName()+" - mid-life 
crisis starts now");

end

rule "Mid-life crisis - solution"
when

p: Person (gender == 'M',age == 40)
p2: Person (gender == 'F',age > 25,age < 30)

then
System.out.println(p2.getName()+" can help "+ 
p.getName()+" overcome the mid-life crisis");

end



Drools Expert - syntax

● Rules can also change some facts (in the 
THEN part) 

● After changing any facts, the update method 
must be called:

rule "John is male"
when

p: Person (name == "John", gender == 'N')
then

p.setGender('M');
update(p);

end



Drools Expert - syntax

● Drools Expert also has special operators
● Operator “exists”

rule "Are there any men age 40"
salience 11
when

exists Person (gender == 'M', age == 40)
then

System.out.println("There is at least one man 
of the age 40");

end



Drools Expert - syntax

● The “forall” special operator

rule "Is every person male"
when

forall (Person(gender == 'M'))
then

System.out.println("All persons are male");
end



Drools Expert - syntax

● Starting the ES in several steps:
1.Loading the knowledge base (from DRL files)
2.Creating facts (Java objects)
3.Entering the facts into the working memory 

(add objects to working memory)
4.Execute ES inference process
● Knowledge base loading is time-intensive. 

Optimization - a knowledge base can be 
loaded from DRL file and serialized as a 
Java object



Drools Expert - syntax

● Drools Expert predefined core classes:
RuleBase (Drools 4.x) - KnowledgeBase (Drools 

5.x)
WorkingMemory (Drools 4.x) - 

StatefulKnowledgeSession (Drools 5.x)
PackageBuilder (Drools 4.x) - KnowledgeBuilder 

(Drools 5.x)
Package (Drools 4.x) - KnowledgePackage 

(Drools 5.x)



Drools Expert – Einstein's riddle

● 4 golfers standing in line next to each other 
getting ready to start the game

● All players have the pants of different colors, 
one of them is wearing red pants

● The player to the right of Fred has blue pants
● Joe is the second in line
● Bob has plaid pants
● Tom is not the first or the fourth in line and is 

not wearing orange pants;
● The question is in what order the players will 

start the game and the color of the pants of 
each of them?



Drools Expert – Einstein's riddle

● This problem can be solved by using rules
● It is important that each condition is 

presented in the form of rules
● After that, just let Drools Expert solve the 

guessing game
● This is not an ES
● A similar problem is the problem of forming 

the seating arrangements ("seating 
problem"), which is used to measure an ES 
shell's execution speeds



Drools Expert – Car malfunction 
diagnosis

● Expert: Car mechanic
● User: Car driver
● ES replaces an expert when it comes to the 

easiest problems that the user can solve by 
him/herself.

● Possible solution:
● Dead battery
● Faulty starter
● Faulty electrical ignition system
● Empty fuel tank
● Faulty fuel pump
● Faulty ignition



Drools Expert – Car malfunction 
diagnosis

● In a conversation with a driver who has this 
problem, the mechanic usually asks the 
following questions:

● Does the car crank?
● Are the lights and siren working?
● Do the lights on the dashboard ignite?
● Does the car have fuel?
● When you press the gas and crank at the 

same time, does a smell of gas appear in the 
car?



Explanation facility

● ES explanation
– HOW - how the ES inferred some conclusion, step 

by step
– WHY - why the ES asks the user some question

● Explanation techniques
– Canned text
– Rule trace

● Increase the users level of trust in ES 
conclusions

● Explanations must be adapted to the user 
knowledge level



JEFF

● JEFF (Java Explanation Facility Framework)
● Free, open-source Java framework
● http://sourceforge.net/projects/jeff/
● The “HOW” explanation
● Rule trace and canned text
● Explanation in PDF, XML and TXT formats
● Explanations with natural-language like 

sentences, images, data tables... 
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