CLUSTERING

JELENA JOVANOVIĆ

Email: jeljov@gmail.com

Web: http://jelenajovanovic.net

OUTLINE

- What is clustering?
- Application domains
- K-Means clustering
 - Understanding it through an example
 - The K-Means algorithm
 - Some challenging issues
 - An example in WEKA

WHAT IS CLUSTERING?

Clustering is an unsupervised learning task

- its input is a set of instances to be grouped based on their similarity
- there is no data about the desired/correct group for any of the input instances

WHAT IS CLUSTERING?

It is about grouping objects in such a manner that for each object the following is true:

the object is more similar to the objects from its group (cluster),
 than to objects from other groups (clusters)

Similarity between objects is computed using certain

- similarity measure (e.g., Cosine similarity), or
- distance measure (e.g., Euclidian distance)

WHAT IS CLUSTERING?

Unlike the classification task, for this task, there is no unique "correct" solution

- how good/suitable a solution is, depends upon the specific domain and application case – the same solution might be differently evaluated in different application cases
- if it is to be done properly, domain experts need to evaluate the solution(s) produced by the model

An example illustrating different valid solutions for the same input dataset

APPLICATION DOMAINS

- Market segmentation
- Detection of groups/communities in social networks
- Pattern mining in the user tracking data
- Grouping of objects (e.g., images or documents) based on their common characteristics

. . . .

K-MEANS ALGORITHM

K-MEANS

One of the simplest and most widely known and used clustering algorithm

It can be best understood through examples, so we will first have a look at an example

The example is taken from the course: https://www.coursera.org/course/ml

Let's suppose the diagram presents the input data (i.e., a set of instances), described with 2 attributes (shown on x and y axes)

Iteration 2, Step 2: Re-calculation of cluster centroids

Iteration 3, Step 1: Re-assignment of instances across the clusters

Iteration 3, Step 2:

Re-calculation of cluster centroids

The algorithm is converging: additional iterations will not lead to any significant change; the process terminates

K-MEANS: THE ALGORITHM

Input:

- *K* the number of clusters
- (unlabeled) training set with m instances; each instance in this set is a vector described with n attributes (x₁, x₂, ..., x_n)
- max max number of iterations (optional parameter)

K-MEANS: THE ALGORITHM

Steps:

- 1) Initial, random selection of a centroid for each cluster
 - centroids are chosen from the training set, i.e., K instances are randomly taken from the training set and set as centroids
- 2) Repeat until the algorithm starts converging or the number of iterations reaches *max*:
 - Cluster assignment: for each instance i from the training set,
 i = 1,m, identify the closest centroid and assign the instance to the corresponding cluster
 - 2) Repositioning of centroids: for each cluster, compute a new centroid by averaging the values of instances assigned to that cluster

K-MEANS: THE COST FUNCTION

The objective of the K-means algorithm is to *minimize the* cost function **J**:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^m ||x^{(i)} - \mu_{c^{(i)}}||^2$$

 $x^{(i)} - i$ -th instance in the training dataset, i=1,m

 $c^{(i)}$ – index of the cluster to which the instance $x^{(i)}$ is currently assigned

 μ_{j} – centroid of the cluster j, j=1,K

 $\mu_{c(i)}$ – centroid of the cluster to which the instance $\mathbf{x}^{(i)}$ has been assigned

This function is also known as distortion function

K-MEANS: THE COST FUNCTION

$$\min_{\substack{c^{(1)},\ldots,c^{(m)},\\\mu_1,\ldots,\mu_K}} J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$$

K-means algorithm minimizes the cost function *J* in the following manner:

- the Cluster assignment phase minimizes J with respect to $c^{(1)}$, ..., $c^{(m)}$, holding $\mu_1, ..., \mu_K$ fixed
- the Repositioning of centroids phase minimizes J with respect to $\mu_1, ..., \mu_K$, holding $c^{(1)}, ..., c^{(m)}$ fixed

K-MEANS: EVALUATION

Criteria for evaluating the "quality" of the resulting clusters:

- Distance between the centroids
 - the more distant the centroids are, the lower is the overlap between the clusters, and thus their quality is higher
- St. deviation of instances from the centroid
 - the lower the st. deviation, the more tightly grouped are the instances, and thus, the clusters are considered better
- Within cluster sum of squared errors
 - a quantitative measure for estimating the quality of the clusters
 - we will consider it through an example (slide 23)

K-MEANS: INITIAL SELECTION OF CENTROIDS

- Depending on how initial cluster centroids are chosen, the K-means algorithm would converge quicker or slower
- "Unlucky" selection of initial centroids may lead K-Means to get stuck in the so called *local optima* and produce poor results
 - this is a local minimum of the cost function

"Lucky" initialization

"Unlucky" initialization that leads to a local minimum

K-MEANS: MULTIPLE RANDOM INITIALIZATIONS

It allows for avoiding situations that lead K-means in a local minimum Consists of the following:

This approach gives good results if the number of clusters is relatively low (2 - 10); should not be used if the number of clusters is higher

K-MEANS: HOW TO CHOOSE K?

How to determine the number of clusters K?

- In case we have domain knowledge about the phenomenon described by the data
 - Make an assumption about the number of clusters (K) based on the domain knowledge
 - Test the model with K-1, K, K+1 clusters and compare the error*
- If we lack domain knowledge about the studied phenomenon
 - Start with a small number of clusters and in multiple iterations test the model by incrementally increasing the number of clusters
 - In each iteration, compare the error* of the current and the previous model, and when the error reduction becomes insignificant, terminate the process

^{*}E.g., within cluster sum of squared errors can be used for the comparison

K-MEANS: AN EXAMPLE IN WEKA

The example we will see is taken from an article, published at the *IBM Developer Works* Web site:

http://www.ibm.com/developerworks/library/os-weka2/

ACKNOWLEDGEMENT AND RECOMMENDATION

Stanford

Machine Learning

Andrew Ng

Learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself.

Workload: 5-7 hours/week

Taught In: English

Subtitles Available In: English

Preview

Sessions:

Oct 14th 2013 (10 weeks long)

Sign Up

Apr 22nd 2013 (10 weeks long)

Sign Up

Coursera:

https://www.coursera.org/course/ml

Stanford YouTube channel:

http://www.youtube.com/view_play_list?p=A89DCFA6ADACE599

(Anonymous) questionnaire for your critiques, comments, suggestions:

http://goo.gl/cqdp3I