
NN II: The delta learning rule

The error correction learning procedure is sim-
ple enough in conception. The procedure is as
follows: During training an input is put into the
network and flows through the network generat-
ing a set of values on the output units.

Then, the actual output is compared with the de-
sired target, and a match is computed. If the out-
put and target match, no change is made to the
net. However, if the output differs from the tar-
get a change must be made to some of the con-
nections.

Let’s first recall the definition of derivative of single-
variable functions.

Definition 1. The derivative of f at (an interior point
of its domain) x, denoted by f ′(x), and defined by

1

f ′(x) = lim
xn→x

f (x)− f (xn)

x− xn

Let us consider a differentiable function

f : R→ R.

The derivative of f at (an interior point of its do-
main) x is denoted by f ′(x).

If f ′(x) > 0 then we say that f is increasing at x,
if f ′(x) < 0 then we say that f is decreasing at
x, if f ′(x) = 0 then f can have a local maximum,
minimum or inflextion point at x.

2

xxn

x - xn

f(x) - f(xn)

f

Derivative of function f .

A differentiable function is always increasing in the
direction of its derivative, and decreasing in the op-
posite direction.

It means that if we want to find one of the local min-
ima of a function f starting from a point x0 then we
should search for a second candidate:

• in the right-hand side of x0 if f ′(x0) < 0, when

3

f is decreasing at x0;

• in the left-hand side of x0 if f ′(x0) > 0, when f
increasing at x0.

The equation for the line crossing the point (x0, f (x0))
is given by

y − f (x0)

x− x0
= f ′(x0)

that is
y = f (x0) + (x− x0)f ′(x0)

The next approximation, denoted by x1, is a solution
to the equation

f (x0) + (x− x0)f ′(x0) = 0

which is,

x1 = x0 − f (x0)

f ′(x0)

This idea can be applied successively, that is

xn+1 = xn − f (xn)

f ′(xn)
.

4

x0x1

f(x0)

f (x)

Downhill direction

The downhill direction is negative at x0.

The above procedure is a typical descent method.
In a descent method the next iteration wn+1 should
satisfy the following property

f (wn+1) < f(wn)

i.e. the value of f at wn+1 is smaller than its previ-
ous value at wn.

In error correction learning procedure, each itera-
tion of a descent method calculates the downhill
direction (opposite of the direction of the deriva-

5

tive) at wn which means that for a sufficiently small
η > 0 the inequality

f (wn − ηf ′(wn)) < f(wn)

should hold, and we let wn+1 be the vector

wn+1 = wn − ηf ′(wn)

Let f : Rn → R be a real-valued function. In a de-
scent method, whatever is the next iteration, wn+1,
it should satisfy the property

f (wn+1) < f(wn)

i.e. the value of f at wn+1 is smaller than its value
at previous approximation wn.

Each iteration of a descent method calculates a down-
hill direction (opposite of the direction of the deriva-
tive) at wn which means that for a sufficiently small

6

η > 0 the inequality

f (wn − ηf ′(wn)) < f(wn)

should hold, and we let wn+1 be the vector

wn+1 = wn − ηf ′(wn).

Let f : Rn → R be a real-valued function and let
e ∈ Rn with ‖e‖ = 1 be a given direction. The
derivative of f with respect e at w is defined as

∂ef (w) = lim
t→+0

f (w + te)− f (w)

t
.

If

e = (0, . . .

i-th︷︸︸︷
1 . . . , 0)T ,

i.e. e is the i-th basic direction then instead of ∂ef (w)

7

e te

f(w + te)

w

w + te

f(w)

we write ∂if (w), which is defined by

∂if (w)

= lim
t→+0

f (w1, . . . , wi + t, . . . wn)− f (w1, . . . , wi, . . . , wn)

t
.

The derivative of f with respect to the direction e..

The gradient of f at w, denoted by f ′(w) is defined
by

8

f ′(w) = (∂1f (w), . . . , ∂nf (w))T

Example 1. Let f (w1, w2) = w2
1 + w2

2 then the gra-
dient of f is given by

f ′(w) = 2w = (2w1, 2w2)
T .

The gradient vector always points to the uphill di-
rection of f . The downhill (steepest descent) direc-
tion of f at w is the opposite of the uphill direction,
i.e. the downhill direction is −f ′(w), which is

(−∂1f (w), . . . ,−∂nf (w))T .

Definition 2. A linear activation function is a map-
ping from f : R→ R such that

f (t) = t

for all t ∈ R.

Suppose we are given a single-layer network with n
input units and m linear output units, i.e. the output
of the i-th neuron can be written as

9

οm

x1 x2 xn

w11 wmn

ο1

oi = neti =< wi, x >= wi1x1 + · · · + winxn,

for i = 1, . . . ,m.

Assume we have the following training set

{(x1, y1), . . . , (xK, yK)}

where xk = (xk1, . . . , x
k
n), y

k = (yk1 , . . . , y
k
m), k =

1, . . . , K.

Single-layer feedforward network with m output units

10

The basic idea of the delta learning rule is to define
a measure of the overall performance of the system
and then to find a way to optimize that performance.

In our network, we can define the performance of
the system as

E =

K∑
k=1

Ek =
1

2

K∑
k=1

‖yk − ok‖2

That is

E =
1

2

K∑
k=1

m∑
i=1

(yki − oki)2

=
1

2

K∑
k=1

m∑
i=1

(yki− < wi, x
k >)2

where i indexes the output units; k indexes the in-
put/output pairs to be learned; yki indicates the target
for a particular output unit on a particular pattern;

oki :=< wi, x
k >

11

indicates the actual output for that unit on that pat-
tern; and E is the total error of the system.

The goal, then, is to minimize this function.

It turns out, if the output functions are differentiable,
that this problem has a simple solution: namely, we
can assign a particular unit blame in proportion to
the degree to which changes in that unit’s activity
lead to changes in the error.

That is, we change the weights of the system in pro-
portion to the derivative of the error with respect to
the weights.

The rule for changing weights following presenta-
tion of input/output pair

(x, y)

(we omit the index k for the sake of simplicity) is
given by the gradient descent method, i.e. we min-

12

imize the quadratic error function by using the fol-
lowing iteration process

wij := wij − η
∂Ek

∂wij

where η > 0 is the learning rate.

Let us compute now the partial derivative of the er-
ror function Ek with respect to wij

∂Ek

∂wij
=

∂Ek

∂neti

∂neti
∂wij

= −(yi − oi)xj

where neti = wi1x1 + · · · + winxn.

That is,

wij := wij + η(yi − oi)xj

13

for j = 1, . . . , n.

Definition 3. The error signal term, denoted by δki
and called delta, produced by the i-th output neuron
is defined as

δi = − ∂Ek

∂neti
= (yi − oi)

For linear output units δi is nothing else but the dif-
ference between the desired and computed output
values of the i-th neuron.

So the delta learning rule can be written as

wi := wi + η(yi − oi)x

where wi is the weight vector of the i-th output unit,
x is the actual input to the system, yi is the i-th coor-
dinate of the desired output, oi is the i-th coordinate
of the computed output and η > 0 is the learning
rate.

14

x1

xn

w1

wn

 ο = f(net)
f

If we have only one output unit then the delta learn-
ing rule collapses into

A single neuron net.

w := w + η(y − o)x = w + ηδx

where δ denotes the difference between the desired
and the computed output.

A key advantage of neural network systems is that
these simple, yet powerful learning procedures can
be defined, allowing the systems to adapt to their
environments.

The essential character of such networks is that they
map similar input patterns to similar output pat-
terns.

15

This characteristic is what allows these networks to
make reasonable generalizations and perform rea-
sonably on patterns that have never before been pre-
sented. The similarity of patterns in a connectionist
system is determined by their overlap.

The overlap in such networks is determined out-
side the learning system itself whatever produces
the patterns.

The standard delta rule essentially implements gra-
dient descent in sum-squared error for linear activa-
tion functions.

It should be noted that the delta learning rule was
introduced only recently for neural network training
by McClelland and Rumelhart.

This rule parallels the discrete perceptron training
rule. It also can be called the continuous percep-

16

tron training rule.

Summary 1. The delta learning rule with linear ac-
tivation functions. Given are K training pairs ar-
ranged in the training set

{(x1, y1), . . . , (xK, yK)}
where xk = (xk1, . . . , x

k
n) and yk = (yk1 , . . . , y

k
m),

k = 1, . . . , K.

• Step 1 η > 0, Emax > 0 are chosen

• Step 2 Weights wij are initialized at small ran-
dom values, k := 1, and the running error E is
set to 0

• Step 3 Training starts here. Input xk is presented,
x := xk, y := yk, and output o = (o1, . . . , om)T

is computed

oi =< wi, x >) = wT
i x

for i = 1, . . . ,m.

17

• Step 4 Weights are updated

wij := wij + η(yi − oi)xj
• Step 5 Cumulative cycle error is computed by

adding the present error to E

E := E +
1

2
‖y − o‖2

• Step 6 If k < K then k := k+1 and we continue
the training by going back to Step 3, otherwise
we go to Step 7

• Step 7 The training cycle is completed. For

E < Emax

terminate the training session. If

E > Emax

then E is set to 0 and we initiate a new training
cycle by going back to Step 3

18

