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WHY NAÏVE BAYES? 
Naïve Bayes (NB) is often cited as an algorithm that is among 
the first to be considered for any classification task 

Rationale: 

§  Simplicity* 

§  Good performance  

§  High scalability  

§  Adaptable to almost any kind of classification task 

*Occam’s Razor: “Other things being equal, simple theories are preferable to complex ones”  



TO RECALL: BAYES RULE 

	P	(H|E)	=	P(E|H)	*	P(H)	/	P(E)	

 

§  H – hypothesis  

§  E – evidence related to the hypothesis H, i.e., the data to be used for 
validating (accepting/rejecting) the hypothesis H 

§  P (H) – probability of the hypothesis (prior probability) 

§  P (E) – probability of the evidence i.e., the state of the world 
described by the gathered data 

§  P (E | H) – (conditional) probability of evidence E given that the 
hypothesis H holds 

§  P (H | E) – (conditional) probability of the hypothesis H given the 
evidence E 



BAYES RULE – AN EXAMPLE 

Let us suppose the following: 

§  one morning, you wake up with a high temperature 

§  the previous day, you heard that some virus infection had started 
spreading through the city, though the infection rate was still rather 
low, namely 2.5% 

§  you’ve also heard that in 50% of cases, the virus went with a high 
temperature 

§  you have a high temperature only a couple of times over a year, so, 
let’s say that the probability that you have a high temp. is 6.5% 

 

Question: what is the probability that, since you have a high 
temperature, you’ve caught the virus? 



BAYES RULE 

Theory Example 
Hypothesis (H) One has caught a virus infection 
P(H) 0.025 
Evidence (E) One has a high temperature 
P(E) 0.065 
(conditional) probability of E 
given H 
P(E|H) 

Probability that the virus infection causes 
high temperature 
0.50 

(conditional) probability of H 
given E:  
P(H|E) 

Probability that given one has a high 
temperature, he/she also has the virus 
? 

P(H|E) = P(E|H) * P(H) / P(E) 

P(H|E) = 0.50 * 0.025 / 0.065 = 0.19  



NB CLASSIFIER 
If there is a class c and an observation o, following the Bayes 
rule, the probability that the observation o is of class c is:  

 P	(c|o)	=	P(o|c)	*	P(c)	/	P(o)	  (1) 

For the given set of classes C and an observation o, we want 
to find class c, from the set C, with the highest conditional 
probability for the observation o; this leads to the function: 

 f	=	argmaxc	iz	C	P(c|o)		    (2) 

By applying the Bayes rule, we get: 

  f	=	argmaxc	iz	C	P(o|c)	*	P(c)	   (3) 

 



NB CLASSIFIER 

f	=	argmaxc	iz	C	P(o|c)	*	P(c)	   (3) 

Now, we need to estimate the probabilities P(c) and P(o|c) 

P(c) can be computed rather easily: by counting the number 
of occurrences of the class c in the training set 

P(o|c) – probability that in the class c one would “find” the 
observation o – not that easy to determine, so we introduce 
an assumption that gave this algorithm the epithet “naïve” 



NB CLASSIFIER 

How do we determine P(o|c)? 

§  we represent the observation o as a vector of its attributes 
(x1, x2, ...,xn), also known as feature vector  

§  so, instead of P(o|c), we’ll have P(x1, x2, x3, ...xn|c)  

§  to compute P(x1, x2, x3, ...xn|c), we introduce the following 
naïve assumption: 

§ attributes that describe observation o are mutually independent, 
i.e., o can be considered as a simple set (bag) of attributes 



NB CLASSIFIER 

The introduced assumption 
§  (–) often is invalid  
§  (–) often leads to a significant loss of information that could 

have been derived from the data  
§  (+) simplifies the computation of P(x1, x2,...,xn|c), and thus 

simplifies the overall classification task 



NB CLASSIFIER 

Based on the introduced assumption, P(x1, x2,...,xn |c) can be 
represented as a product of individual conditional probabilities  

P(x1, x2,...,xn |c) = P(x1|c) * P(x2|c) * … * P(xn|c)  

Thus, we arrive to the general equation of the NB algorithm: 

 f	=	argmaxc	iz	C	P(c)	*	Пi=1,nP(xi|c)	



NB CLASSIFIER 

The probabilities are estimated on the training set, based on 
the following equations: 

P(c)	=  number of observations of the class c / total number of 
observations in the training set 

P(xi|c)	is determined from the distribution of the attribute xi in the 
observations of the class c; the computation depends on the type of 
attribute (nominal or numeric) 



CHARACTERISTICS OF THE NB ALGORITHM 

§  Very fast and efficient  

§  Often produces good results 
§  often turns out to be better or at least equally good as 

other, more sophisticated algorithms 

§  Does not require much memory   

§  Has low affinity to over-fitting  

§  Suitable even with small training set 



CHARACTERISTICS OF THE NB ALGORITHM 
§  “Resistant” to the low-importance attributes  

§  attributes that are equally distributed through the overall training set, 
and thus do not have significant impact on the class label 

§  Primarily suitable for use with nominal attributes; in the case of  
numerical attributes  
§  Discretize the attribute values, or 
§  Use probability distribution of the attributes (typically, Normal dist.) to 

estimate the probability of each attribute value 


