
RDF, RDFS &
JSON-LD

UROŠ KRČADINAC

EMAIL: uros@krcadinac.com

URL: uros@krcadinac.com

Linked Data

•  Linked Data is a way to create a network of standards-based
machine interpretable data across different documents and Web
sites.

•  It allows an application to start at one piece of Linked Data, and
follow embedded links to other pieces of Linked Data that are
hosted on different sites across the Web.

Reference taken from: http://www.w3.org/TR/json-ld/

What is RDF?

•  Resource Description Framework

•  W3C standard for describing data on the Web

•  One of the three fundamental Semantic Web technologies (other
two being SPARQL and OWL)

What is RDF?

•  RDF is the data model of the Semantic Web

•  Simple model, based on a graph

•  Describes relations between things

person “Jason Smith”

subject object
predicate

Example of RDF graph

name

RDF is a graph

•  RDF is based on triplets

 (subject predicate object)

•  Graph elements

•  Node (for describing subjects and objects)
•  Resource (depicted with an elipse)

•  Literal (depicted with a rectangle)

•  Relationship (for describing predicates)

Multiple properties

person1 “programmer” occupation

“1980-12-12”

“Jason Smith”

birthDate

name

company1 “Digital Bazaar” name

affiliation

Using Web infrastructure

•  In a global data repository on the Web we must identify resources
globally and uniquely

•  URI

•  Data naming using URIs, usually with protocol http:// - THIS IS
A KEY CONCEPT FOR LINKED DATA

URL – Uniform Resource Locator location

URI – Uniform Resource Identifier identifier

IRI – International Resource Identifier identifier

Graphs can have named resources

http://
example.com/

person1
“programmer” http://schema.org/

occupation

“1980-12-12”

“Jason Smith”

http://schema.org/birthDate

http://schema.org/name

http://
example.com/

company1
“Digital Bazaar” http://schema.org/

name

http://schema.org/affiliation

Using vocabularies

"@vocab": "http://schema.org/”

person1 “programmer” occupation

“1980-12-12”

“Jason Smith”

birthDate

name

company1 “Digital Bazaar” name

affiliation

Triplet form

person1 name “Jason Smith” .

person1 occupation “programmer” .

person1 birthDate “1980-12-12” .

company1 name “Digital Bazaar” .

person1 affiliation company1 .

Simple Rules

•  Use URIs to identify resources

•  If the same URI is used on multiple places, then they identify the
same resource

•  This enables for easy interlinking of data coming from multiple
sources

RDFS
UROŠ KRČADINAC

EMAIL: uros@krcadinac.com

URL: uros@krcadinac.com

RDFS

•  RDFS - RDF Schema

•  Adding semantics to RDF

•  Creating data schema – vocabulary

•  Vocabulary is defined in the same way as data

Classes and Hierarchies

Person

rdf:type

Person rdf:type rdfs:Class .
person1 rdf:type Person .

person1 “programmer” occupation

“1980-12-12”

“Jason Smith”

birthDate

name

company1 “Digital Bazaar” name

affiliation

Company

rdf:type

model
data

Properties

Person

rdf:type

person1 “programmer” occupation

“1980-12-12”

“Jason Smith”

birthDate

name

company1 “Digital Bazaar” name

affiliation

Company affiliation

rdf:type

model
data

domain range property

Properties

Person Company affiliation

affiliation rdf:type rdf:Property .
affiliation rdfs:domain Person .
affiliation rdfs:range Company .

Properties

Domain points to a class (or multiple classes) a property can be used
on

Range represents a class (or multiple classes) that can be a value of a
property

Both domain and range are optional. If domain is not defined,
property can be used on any class. If range is not defined, value of a
property can be any class.

Not the same as with OO
languages
•  Properties can exist without any class, they are first class citizens

•  Properties can be extended, they can have their own hierarchy of
sub-properties

•  Properties can not be overridden on a lower level of hierarchy (by
sub-properties)

Schema.org

Schema.org is a collaborative, community activity with a mission to
create, maintain, and promote schemas for structured data on the
Internet, on web pages, in email messages, and beyond. Schema.org
is sponsored by Google, Microsoft, Yahoo and Yandex.

The vocabulary cover entities, relationships between entities and
actions, and can easily be extended through a well-documented
extension model

Schema.org

Some of the class defined:

•  Creative works: CreativeWork, Book, Movie, MusicRecording,
Recipe, TVSeries …

•  Netekstualni objekti: AudioObject, ImageObject, VideoObject

•  Event

•  Organization

•  Person

•  Place, LocalBusiness, Restaurant …

•  Product, Offer, AggregateOffer

•  Review, AggregateRating

•  Action

Schema.org

Some of the extensions:

•  auto.schema.org

•  bib.schema.org

RDF(S) vocabulary

RDF and RDFS vocabularies

Prefixes: rdf i rdfs

Classes (some of them)

•  rdfs:Class

•  rdfs:Property

•  rdfs:Literal

Properties (some of them)

•  rdf:type (resurs je instanca
neke klase)

•  rdfs:subClassOf (class is a
subclass of another class)

•  rdfs:subPropertyOf
(subproperty)

•  rdfs:seeAlso (reference to
a description)

•  rdfs:domain (domain of a
property)

•  rdfs:range (range of a
property)

JSON – JavaScript Object Notation

•  Lightweight format for data exchange

•  Simple

•  For the developers writing it

•  For the machines processing it

•  JSON is a text-based format

•  Independent from the programming language

JSON object

•  A set of name-value pairs

•  JSON object starts with an open brace ({), and ends with a
closing brace (})

•  Name and value are separated by colon (:), and name/value
pairs are separated with comma (,)

JSON object example

{

 “title” : “The Matrix”,

 “producer” : “Joel Silver”,

 “release_year” : 1999

}

JSON array

•  JSON array represents an ordered sequence of values.

•  Starts with an opening bracket [, and ends with a closing bracket]

•  Values are separated by comma

JSON array example

[
 {
 “title” : “The Matrix”,

 “producer” : “Joel Silver”,
 “release_year” : 1999

 },
 {

 “title” : “Equilibrium”,
 “producers” : [
 {
 “name” : “Joel Silver”
 },
 {
 “name”:“Lucas Foster”
 }
],
 “release_year” : 1999

 }
]

JSON-LD syntax

•  Syntax for serializing RDF data into JSON format

•  JSON-LD is primarily intended to be a way to use Linked Data in
Web-based programming environments, to build interoperable
Web services, and to store Linked Data in JSON-based storage
engines (MongoDB, ElasticSearch, etc.)

•  It can be combined with other Semantic Web technologies (e.g.
SPARQL)

JSON-LD

In addition to all the features JSON provides, JSON-LD introduces:

•  a universal identifier mechanism for JSON objects via the use of
IRIs

•  a way to disambiguate keys shared among different JSON
documents by mapping them to IRIs via a context

•  a mechanism in which a value in a JSON object may refer to a
JSON object on a different site on the Web

•  the ability to annotate strings with their language

Keywords

@id – Used to uniquely identify things that are being described in the
document with IRIs or blank node identifiers

@type – Used to set the data type of a node

@context – Used to define the short-hand names that are used
throughout a JSON-LD document. These short-hand names are
called terms

@language – Used to specify the language for a particular string
value

JSON document example

	

{	

	"name":	”Jason	Smith",		

	”homepage":	"http://jason.smith.org/",		

	"image":	"http://jason.smith.org/images/jason.png”	

}	

JSON-LD document exam

{	

								"http://schema.org/name":	”Jason	Smith",		

	"http://schema.org/url":	{		

	 	"@id":	"http://jason.smith.org/”	

	},	

	"http://schema.org/image":	{	

	 	"@id":	"http://jason.smith.org/images/jason.png”	

	}	

}	

	

Every property is unambiguously identified by an IRI (like name, url and
image). Developers, and programs, can follow the IRI address and look up
the property definition.

This process is called IRI dereferencing.

	

The '@id' keyword
means 'This value is an
identifier that is an IRI'

Using @context element

@context is used to map terms to IRIs

{

 "@context": {

 "name": "http://schema.org/name",

 "image": {

 "@id": "http://schema.org/image",

 "@type": "@id"

 },

 "homepage": {

 "@id": "http://schema.org/url",

 "@type": "@id"

 }

 }

}	

This means that 'name' is shorthand
for 'http://schema.org/name'

This means that 'image' is shorthand
for 'http://schema.org/image'

This means that a string value associated
with 'image' should be interpreted as an
identifier that is an IRI

This means that
'homepage' is shorthand for
'http://schema.org/url'

This means that a string value
associated with 'homepage' should be
interpreted as an identifier that is an IRI

Defining @context inline

{	

					"@context":	{	

	"name":	"http://schema.org/name",		

										"image":	{	

															"@id":	"http://schema.org/image",		

						"@type":	"@id"	

	},	

	"homepage":	{	

						"@id":	"http://schema.org/url",	

						"@type":	"@id"	

	}	

					},	

					"name":	”Jason	Smith",		

					"homepage":	"http://jason.smith.org/",		

					"image":	"http://jason.smith.org/images/jason.png"	

}	

Defining @context externally

{	

	"@context":	"http://json-ld.org/contexts/person.jsonld",	

	"name":	”Jason	Smith",	

	"homepage":	"http://jason.smith.org/",	

	"image":	"http://jason.smith.org/images/jason.png"	

}	

	

Defining the context in an document allows for reuse of the
document definition and term to IRI mappings.

Referencing @context via HTTP Link
attribute

JSON-LD context (@context) can be defined in the HTTP header, by
using the Link attribute.	

GET	/jason-smith.json	HTTP/1.1		

Host:	example.com	

Accept:	application/ld+json,application/json,*/*;q=0.1		

====================================	
HTTP/1.1	200	OK	

…	

Content-Type:	application/json	

Link:	<http://json-ld.org/contexts/person.jsonld>;	rel="http://www.w3.org/
ns/json-ld#context";	type="application/ld+json"		

{	

	"name":	”Jason	Smith",	

	"homepage":	"http://jason.smith.org/",	
	"image":	"http://jason.smith.org/images/jason.png"	

}	

Defining resource type (class)

The type of a particular node can be specified using the @type
keyword. Types are uniquely identified with an IRI.

{	

	...	

	"@id":	"http://example.org/places#BrewEats",	

	"@type":	"http://schema.org/Restaurant",		

	...	

}	

Defining resource type (class)

A node can be assigned more than one type by using an array:

{	
	...	
	"@id":	"http://example.org/places#BrewEats",		
	"@type":	[
	 	"http://schema.org/Restaurant",	
	 	"http://schema.org/Brewery”	
],	
	...	

}	

Defining resource type (class)

The value of an @type key may also be a term defined in the active
context:

{	
					"@context":	{	

	...	

	"Restaurant":	"http://schema.org/Restaurant",	

	"Brewery":	"http://schema.org/Brewery"	

					},		
					"@id":	"http://example.org/places#BrewEats",	

					"@type":	[

	"Restaurant",		

	"Brewery”	

],	
					...	

}	

Defining vocabulary

If all properties and types may come from the same vocabulary,
keyword @vocab allows for defining the common prefix for all
terms.	

{	
	"@context":	{	
	 	"@vocab":	"http://schema.org/"	
	},	
	"@id":	"http://example.org/places#BrewEats",	

	"@type":	"Restaurant",		
	"name":	"Brew	Eats"		
	...		

}	

Compact IRI

A compact IRI is a way of expressing an IRI using a prefix and suffix
separated by a colon (:).. E.g. if we want to use the FOAF vocabulary
(http://xmlns.com/foaf/0.1/), we can introduce the prefix foaf.

{	
				"@context":	{	

	"foaf":	"http://xmlns.com/foaf/0.1/"		

	...	

					},	

					"@type":	"foaf:Person”,	

					"foaf:name":	"Dave	Longley”,	

					...	

}	

foaf:name is expanded into IRI http://xmlns.com/foaf/0.1/name

foaf:Person is expanded into IRI http://xmlns.com/foaf/0.1/Person

Example 1

There	is	a	class	Person.	

Person	can	have	an	attribute	name.	

There	is	class	Movie.	

Movie	has	an	attribute	title	that	is	a	string	and	an	
attribute	director	which	is	a	person	who	directed	the	
movie.	

There	is	a	movie	titled	“Interstellar”.	The	movie	
director	is	Christopher	Nolan.	

	

Example 1 - Graph

“Interstellar”

ex:movie1

rdf:type

xsd:string

ex:title

ex:Movie ex:Person

ex:title

xsd:string

ex:name

ex:director

ex:person1 ex:director

“Christopher Nolan”

ex:name

model
data

Example 1 – JSON-LD

{
		 	"@context:":	{	

	 	"@vocab":	"http://example.com/"	
	},	

	 	"@id":	”http//example.com/moveie1",	
	"@type":	”Movie",	

	”title":	"Interstellar",	
	”director":	{	

	 	"@type":	”Person",	
	 	"@id":	”http://example.com/person1",	

	 	"name":	"Christopher	Nolan"	

}

DC - Dublin Core

DC - Dublin Core (Metadata Initiative)

Idea – describing documents by using set of RDF elements

•  Predefined vocabulary

•  Enables describing data such as: author, co-author, title, topic,
date created...

•  Free access to this metadata and their interlining over multiple
sources

DC - Dublin Core

Prefix: dc

Contains no classes, only properties

Properties (some):

•  dc:date

•  dc:description
•  dc:language

•  dc:publisher

•  dc:subject

•  dc:title

•  dc:creator (author)

•  dc:contributor (somebody who
contributed, but is not an
author)

FOAF

FOAF - Friend Of A Friend

Idea:

•  Describe basic information about people (name, lastname, email
address, homepage...)

•  Link people who know each other (knows)

•  No data silos like with social networks

FOAF

Prefix: foaf

Classes (some of them)

•  foaf:Person

•  foaf:OnlineAccount

Properties (some of them)

•  foaf:name

•  foaf:firstName
•  foaf:lastName

•  foaf:nick (nickname)

•  foaf:mbox (mailbox)

•  foaf:knows
•  foaf:homepage

•  foaf:workplaceHomepage

•  foaf:account

•  foaf:accountName

•  foaf:accountServiceHomepa
ge

•  foaf:depiction (depiction of a
specific resource)

Questions?
UROŠ KRČADINAC

EMAIL: uros@krcadinac.com

URL: uros@krcadinac.com

