
SPARQL QUERY LANGUAGE

JELENA JOVANOVIC
EMAIL: JELJOV@GMAIL.COM
WEB: HTTP://JELENAJOVANOVIC.NET

SPARQL query language

• W3C standard for querying RDF graphs

• Can be used to query not only native RDF data, but also
any data that could be mapped to RDF

•  This mapping could be done by making use of
•  (W3C) standard mapping languages such as R2RML that

allow for transforming relational data to RDF

•  Various mapping tools such as those listed at:
 http://www.w3.org/wiki/ConverterToRdf

Let’s start with an example

Graphical representation of a small segment of the RDF graph given in:
http://www.ldodds.com/ldodds-knows.rdf

foaf:depiction

Task 1: Find names of all mentioned persons

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?name
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE
{
 ?x rdf:type foaf:Person.
 ?x foaf:name ?name.

}

Triple pattern

Graph pattern

The basic structure of a SPARQL query

• PREFIX
•  the SPARQL equivalent of declaring an XML namespace

• SELECT
•  like its twin in an SQL query, it is used to define the data

items that will be returned by the query

•  FROM
•  identifies the data against which the query will be run
•  can be given in runtime as well

• WHERE
•  defines the part of RDF graph we are interested in

Some notes about the SPARQL syntax

• Variables are prefixed with either "? " or "$“
•  these two are interchangeable

• Blank nodes are indicated by:
•  the label form, such as "_:abc", or
•  the abbreviated form "[]"

• Dots (.) separate triple patterns

• Semi column (;) separates triple patterns with the
common subject

About graph patterns

•  In SPARQL, one cannot SELECT a variable if it is not
listed in the graph pattern (i.e., in the WHERE clause).

•  Important:
 SPARQL query processor
 has NO data dictionary or schema
 that lists types and properties of a resource

 The only schema it has is the graph pattern
 (i.e., the WHERE part of the query)

About graph patterns

• Graph pattern is a collection of triple patterns
•  It identifies the shape of the (RDF) graph we want to

match against

• Within one graph pattern each variable must have the
same value no matter where and how (in the graph
pattern) it is used

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?name ?email
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE
{
 ?doc rdf:type foaf:Document ;
 foaf:maker ?author .

 ?author foaf:knows ?someone .
 ?someone foaf:name ?name ; foaf:mbox ?email .
 }

Task 2: Find names and emails of the persons
whom the author of the document knows

Result of the SELECT query

{	
		"head":	{	
				"vars":	["name"	,	"email"]	
		}	,	
		"results":	{	
				"bindings":	[
						{	
								"name":	{	"type":	"literal"	,	"value":	"Dave	Beckett"	}	,	
								"email":	{	"type":	"uri"	,	"value":	"mailto:dave@dajobe.org"	}	
						}	,	
						{	
								"name":	{	"type":	"literal"	,	"value":	"Dan	Brickley"	}	,	
								"email":	{	"type":	"uri"	,	"value":	"mailto:dan@danbri.org/"	}	
						}	,	
						{	
								"name":	{	"type":	"literal"	,	"value":	"Edd	Dumbill"	}	,	
								"email":	{	"type":	"uri"	,	"value":	"mailto:edd@xml.com"	}	
						}	
]	
		}	
}	 The result set for the query from the previous example

Variables from the
SELECT clause

Optional Matching

• RDF often represents semi-structured data
•  this means that two resources of the same type may

have different sets of properties
•  For instance,

•  a FOAF description of a person may consist only of an
e-mail address;

•  alternatively, it can incorporate a real name, twitter
nickname, URL of the photo depicting him/her, etc.

• SPARQL’s mechanism for optional matching
allows for handling this heterogeneity

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?person ?blog
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE {
 ?doc rdf:type foaf:Document; foaf:maker ?author .
 ?author foaf:knows ?person.
 OPTIONAL { ?person foaf:weblog ?blog. }
 }

Task 3: Find all persons that the author of the
document knows as well as their blogs if they have any

 The OPTIONAL block

•  If a query has multiple optional blocks
•  these act independently of one another
•  each block may be omitted from, or present in, a solution.

• Optional blocks can also be nested
•  the inner optional block is considered only when the outer optional

block's pattern matches the graph.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?person ?email ?blog
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE
{
 ?doc rdf:type foaf:Document; foaf:maker ?author .
 ?author foaf:knows ?person.
 OPTIONAL { ?person foaf:mbox_sha1sum ?email. }
 OPTIONAL { ?person foaf:weblog ?blog . }
 }

Task 4: Find all persons that the author of the document
knows as well as their blogs and emails, if these are
available

Alternative Matching

•  Let’s suppose that …
•  foaf:knows and rel:hasMet properties are used to represent

somewhat similar information

•  we are interested in all persons that the author of the document
either knows or has (ever) met

•  In situations like this, you can use
 SPARQL's alternative matching feature
 to return whichever of the properties is available

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>
SELECT ?name
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE {
 ?doc foaf:maker ?author .
 { ?author foaf:knows [foaf:name ?name] . }
 UNION
 {?author rel:hasMet [foaf:name ?name] . }
 }

Task 5: Find names of all persons that the author of the
document either has met or knows

UNION
•  In contrast with OPTIONAL graph patterns, in the

case of UNION at least one of the alternatives must
be matched by any query solution;

•  If both branches of the UNION match, two solutions
will be generated.

DISTINCT

•  In the result set of the previous task some names
appeared twice

• By adding the DISTINCT keyword in the SELECT clause,
 we exclude multiple appearance of the same values from
the result set
•  Just like in SQL

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>
SELECT DISTINCT ?name
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE
{
 ?doc foaf:maker ?author .
 { ?author foaf:knows [foaf:name ?name] . }
 UNION
 {?author rel:hasMet [foaf:name ?name] . }
 }

Task 5a: Find names of all the persons that the author of
the document either has met or knows (without name
repetition)

The ORDER BY clause

•  Indicates that the result set should be ordered by the
specified variable

•  It can list one or more variable names, indicating the
variables that should be used to order the result set

• By default all sorting is done in the ascending order
•  this can be explicitly changed using the DESC

(descending) and ASC (ascending) functions

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>
SELECT DISTINCT ?name
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE
{
 ?doc foaf:maker ?author .
 { ?author foaf:knows [foaf:name ?name] . }
 UNION
 {?author rel:hasMet [foaf:name ?name] . }
 }
ORDER BY DESC (?name)

Task 5b: Find names of all persons that the author of the
document has either met or knows; sort the names in
descending order

SPARQL FILTERs
• SPARQL FILTERs restrict the solutions of a graph pattern

match according to the given expressions

• Expressions can be of different kinds, but they must
evaluate in a boolean value (true or false)

•  The following slides illustrate some of the functions that
can be used for filtering the result set

Task 6: Find names of all the persons whose
birthday is unknown

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bio: <http://purl.org/vocab/bio/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?name
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE {
 ?person rdf:type foaf:Person ; foaf:name ?name .
 FILTER NOT EXISTS {

 ?person bio:event ?ev .
 ?ev rdf:type bio:Birth ; bio:date ?birthdate. }
}

Note: Function NOT EXISTS is introduced in SPARQL 1.1; if the
query does not work, it means you are using an old SPARQL engine

Task 7: Find names of all members of the
Dodds family

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
FROM <http://www.ldodds.com/ldodds-knows.rdf>

WHERE
{
 ?person foaf:name ?name
 FILTER regex(?name, "dodds", "i")
}

Filtering with regular expressions
Similar to SQL "LIKE"

Alternative:
FILTER strEnds(lcase(?name), “dodds”)

Task 7a: Find names of all the persons who have
Gmail email address

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
FROM <http://www.ldodds.com/ldodds-knows.rdf>

WHERE
{
 ?person foaf:name ?name ; foaf:mbox ?mbox
 FILTER regex(str(?mbox), "@gmail\\.com$”)
}

To learn more about the regular expression language check
this tutorial: http://regex.bastardsbook.com/

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rev: <http://www.purl.org/stuff/rev#>

SELECT ?review
FROM <http://www.cs.umd.edu/~hendler/2003/foaf.rdf>
WHERE {
 ?someone rdf:type foaf:Person;
 foaf:name ?name FILTER regex(?name, "Jim", "i").
 ?someone foaf:made ?review .
 ?review rev:rating ?rating
 FILTER (xsd:decimal(?rating) >= "6"^^xsd:decimal) .
 }

SPARQL
type casting

Task 8: Get all reviews with rating above 6 that were
created by a person named Jim
(filtering based on elements values)

Grouping and aggregating data

• GROUP BY allows for grouping the items in the result set
based on one or more variables and/or expressions

•  There are various functions applicable at the group level:
SUM, COUNT, AVG, MIN, MAX and the like

• HAVING allows for selecting/filtering the query results at
the group level
•  it is analogous to a FILTER expression, but operates over

groups, rather than individual solutions

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

SELECT ?manufacturer (COUNT(?product) AS ?count)
WHERE {
 ?product rdf:type <http://dbpedia.org/ontology/Device> ;
 dbpedia-owl:manufacturer ?manufacturer .
}
GROUP BY ?manufacturer
HAVING (COUNT(?product) > 10)

Task 9: Find manufacturers who produce more than 10
different products and display the number of different
products they produce

Other kinds of SPARQL queries

Besides the SELECT queries,
SPARQL supports three other query types:

• ASK
• DESCRIBE
• CONSTRUCT

ASK query

• Aimed at testing whether a query pattern has a solution

• No information is returned about the possible query
solutions, just whether a solution exists

• An example: have Natalie Portman and Scarlett Johansson
ever played in the same movie?

PREFIX db: <http://dbpedia.org/ontology/>
ASK {

 ?movie
 db:starring <http://dbpedia.org/resource/Natalie_Portman> ;
 db:starring <http://dbpedia.org/resource/Scarlett_Johansson> .

}

ASK query

Results of an ASK query:
•  Possible values: true/false

•  JSON format of the results:

{
 "head" : { } ,
 "boolean" : true
}

DESCRIBE query
• Returns a graph comprising all the available triplets

about the resource matched in the graph pattern (that is,
in the WHERE part of the query)

• Example:

PREFIX db: <http://dbpedia.org/ontology/>
DESCRIBE ?movie
WHERE {

 ?movie
 db:starring <http://dbpedia.org/resource/Natalie_Portman> ;
 db:starring <http://dbpedia.org/resource/Scarlett_Johansson> .

 }

The query returns a graph comprising all the available triplets about the
movie(s) starred by both actresses

CONSTRUCT query

•  It is used for creating a new RDF graph from an
existing one

•  It is for RDF graph
 somewhat the same as XSLT for XML data

PREFIX db-ont: <http://dbpedia.org/ontology/>
PREFIX schema: <http://schema.org/>
CONSTRUCT {

 ?someone a schema:Person ;
 schema:birthPlace ?birthplace ;
 schema:birthDate ?birthdate ;
 schema:jobTitle "Musician".

} WHERE {
 ?someone a db-ont:MusicalArtist ;
 db-ont:birthDate ?birthdate ;
 db-ont:birthPlace ?birthplace .
 }

Task 10: Map the data about musicians’ date and place
of birth from DBpedia to Schema.org vocabulary

abbreviated form for rdf:type

Task 11: Establish aunt relationship

PREFIX schema: <http://schema.org/>
PREFIX rel: <http://purl.org/vocab/relationship/>
CONSTRUCT {

 ?child rel:hasAunt ?aunt.
} WHERE {

 ?child schema:parent ?parent .
 ?parent schema:parent ?grandparent .
 ?aunt schema:parent ?grandparent ;
 schema:gender ?gender

 FILTER (?parent != ?aunt && regex(?gender, “female”, “i”)) .
}

Queries over multiple distributed data sources

• All the queries we’ve seen so far were executed over
data originating from one data source (one RDF graph)

• However, queries could be executed over multiple data
sources

•  In that case, we talk about federated queries

•  SPARQL 1.1 introduces the SERVICE keyword for defining
additional data sources

Task 12: Find all the acquaintances of Leigh Dodds who
have the same surname as well known scientists

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX db: <http://dbpedia.org/ontology/>
SELECT ?person
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE {
 <http://www.ldodds.com#me> foaf:knows ?person .
 ?person foaf:surname ?surname .

 SERVICE <http://dbpedia.org/sparql> {
 ?someone a db:Scientist ;
 foaf:surname ?surname .
 }

}

Unique identifier (IRI) for Leigh Dodds as given in the used data source (see FROM)

Learn SPARQL through examples

•  Search RDF data with SPARQL
•  http://www-128.ibm.com/developerworks/xml/library/j-sparql/

•  SPARQL by Example
•  http://www.cambridgesemantics.com/semantic-university/sparql-by-example

•  A detailed SPARQL tutorial
•  http://www.w3.org/2004/Talks/17Dec-sparql/

•  SPARQL screencast
•  http://linkeddata.deri.ie/node/58

•  Bring existing data to the Semantic Web
•  http://www-128.ibm.com/developerworks/xml/library/x-semweb.html

Learn SPARQL through examples

•  RDF as self-describing data
•  http://goo.gl/Gdr5LG

•  SPARQL at the movies
•  http://www.snee.com/bobdc.blog/2008/11/sparql-at-the-movies.html

•  Bart (Simpson) blackboard queries
•  http://goo.gl/aM9mcd ; http://goo.gl/z9qOlH

•  Example SPARQL queries over 10+ different RDF datasets
•  http://openuplabs.tso.co.uk/datasets

•  SPARQL queries over Europeana repository
•  http://europeana.ontotext.com/sparql

Some handy tools for learning SPARQL

• YASGUI – Yet Another SPARQL GUI
•  http://yasgui.laurensrietveld.nl/

•  Flint SPARQL Editor
•  http://openuplabs.tso.co.uk/demos/sparqleditor

• SPARQLer - an online SPARQL query tool
•  http://www.sparql.org/sparql.html

• ARQ, a SPARQL processor for Jena framework
•  http://jena.sourceforge.net/ARQ/

