SPARQL QUERY LANGUAGE

JELENA JOVANOVIC

EMAIL: JELJOV@GMAIL.COM
WEB: HTTP://JELENAJOVANOVIC.NET

L
SPARQL query language

- W3C standard for querying RDF graphs

- Can be used to query not only native RDF data, but also
any data that could be mapped to RDF
- This mapping could be done by making use of

- (W3C) standard mapping languages such as R2RML that
allow for transforming relational data to RDF

- Various mapping tools such as those listed at:
http://www.w3.org/wiki/ConverterToRdf

Let’s start with an example

foaf:name
Ethan Dodds R foaf:mbox_sha1 sum
d

rel:parentOf rdf:type

/
rdf:type

7

foaf:mbox_sha1sum ' —(usefulinc.com/
foaf:knows foaf:weblog edd/blog
o
71b88e951cbwe33g...
foaf:name

foaf:mbox Edd Dumbill

}

mailto:edd@
xml.com
rdf:type

foaf:Document

1bca73e5c6916¢c7c...

foaf:mbox_sha1sum

http://
www.ldodds.com#

foaf:depigtion

http://
www.ldodds.com/
Idodds-knows.rdf

dc:title

Metadata about Leigh

Dodds's relationships

Graphical representation of a small segment of the RDF graph given in:
http://www.ldodds.com/Idodds-knows.rdf

Task 1: Find names of all mentioned persons

PREFIX foaf: <http://xmIns.com/foaf/0.1/>

PREFIX rdf. <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT “name

FROM <nhttp://www.ldodds.com/Idodds-knows.rdf>

WHERE

{

?x rdf:type foaf:Person.
?x foaf:name ?name.
} N N

\ N\

\ Triple pattern

Graph pattern

S
The basic structure of a SPARQL query

- PREFIX
- the SPARQL equivalent of declaring an XML namespace
- SELECT

- like its twin in an SQL query, it is used to define the data
items that will be returned by the query

- FROM
- identifies the data against which the query will be run
- can be given in runtime as well

- WHERE
- defines the part of RDF graph we are interested in

S
Some notes about the SPARQL syntax

- Variables are prefixed with either "? " or "$"
- these two are interchangeable

- Blank nodes are indicated by:
- the label form, such as " :abc", or

- the abbreviated form "[]"
- Dots (.) separate triple patterns

- Semi column (;) separates triple patterns with the
common subject

S
About graph patterns

- In SPARQL, one cannot SELECT a variable if it is not
listed in the graph pattern (i.e., in the WHERE clause).

- Important:
SPARQL query processor
has NO data dictionary or schema
that lists types and properties of a resource

The only schema it has is the graph pattern
(i.e., the WHERE part of the query)

S
About graph patterns

- Graph pattern is a collection of triple patterns

- It identifies the shape of the (RDF) graph we want to
match against

- Within one graph pattern each variable must have the
same value no matter where and how (in the graph
pattern) it is used

L
Task 2: Find names and emails of the persons

whom the author of the document knows

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?name ?email
FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE
{
?doc rdf:type foaf:Document ;
foaf:maker ?author .
?author foaf:knows ?someone .
?someone foaf:name ?name ; foaf:mbox ?email .

}

L
Result of the SELECT query

Variables from the
{ "head": { / SELECT clause
"vars": ["name" , "email"]
} o
"results": {
"bindings": [

{
"name": { "type": "literal" , "value": "Dave Beckett" } ,
"email": { "type": "uri" , "value": "mailto:dave@dajobe.org" }

}os

{
"name": { "type": "literal" , "value": "Dan Brickley" } ,
"email": { "type": "uri" , "value": "mailto:dan@danbri.org/" }

}os

{
"name": { "type": "literal" , "value": "Edd Dumbill" } ,
"email": { "type": "uri" , "value": "mailto:edd@xml.com" }

}

]

¥ The result set for the query from the previous example

Optional Matching

RDF often represents semi-structured data

this means that two resources of the same type may
have different sets of properties

For instance,

a FOAF description of a person may consist only of an
e-mail address;

alternatively, it can incorporate a real name, twitter
nickname, URL of the photo depicting him/her, etc.

SPARQL’s mechanism for optional matching
allows for handling this heterogeneity

Task 3: Find all persons that the author of the
document knows as well as their blogs if they have any

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT 7?person ?blog
FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE {
?doc rdf:type foaf:Document; foaf:maker ?author .
?author foaf:knows ?person.
OPTIONAL { ?person foaf:weblog ?blog. }

}

B
The OPTIONAL block

- If a query has multiple optional blocks
- these act independently of one another
- each block may be omitted from, or present in, a solution.

- Optional blocks can also be nested

- the inner optional block is considered only when the outer optional
block's pattern matches the graph.

Task 4: Find all persons that the author of the document
knows as well as their blogs and emails, if these are

available

PREFIX foaf: <http://xmIns.com/foaf/0.1/>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?person ?email ?blog

FROM <http://www.ldodds.com/Idodds-knows.rdf>

WHERE

{

?doc rdf:type foaf:Document; foaf:maker ?author .

?author foaf:knows ?person.
OPTIONAL { ?person foaf:mbox_shalsum ?email. }

OPTIONAL { ?person foaf:weblog ?blog . }
}

B
Alternative Matching

- Let’ s suppose that ...

- foaf:knows and rel:hasMet properties are used to represent
somewhat similar information

- we are interested in all persons that the author of the document
either knows or has (ever) met

- In situations like this, you can use
SPARQL's alternative matching feature
to return whichever of the properties is available

Task 5: Find names of all persons that the author of the
document either has met or knows

PREFIX foaf. <http://xmIns.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>
SELECT ?name
FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE {

?doc foaf:maker ?author .

{ ?author foaf.knows [foaf:name ?name] . }

UNION
{?author rel:hasMet [foaf:name ?name] . }

}

B
UNION

- In contrast with OPTIONAL graph patterns, in the
case of UNION aft least one of the alternatives must

be matched by any query solution,

- |If both branches of the UNION match, two solutions
will be generated.

B
DISTINCT

- In the result set of the previous task some names
appeared twice

- By adding the DISTINCT keyword in the SELECT clause,
we exclude multiple appearance of the same values from
the result set

- Just like in SQL

Task 5a: Find names of all the persons that the author of
the document either has met or knows (without name

repetition)

PREFIX foaf. <http://xmIns.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>
SELECT DISTINCT ?name

FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE

{

?doc foaf:maker ?author .
{ ?author foaf:knows [foaf:name ?name] . }

UNION
{?author rel:hasMet [foaf:name ?name] . }

}

The ORDER BY clause

- Indicates that the result set should be ordered by the
specified variable

- It can list one or more variable names, indicating the
variables that should be used to order the result set

- By default all sorting is done in the ascending order

- this can be explicitly changed using the DESC
(descending) and ASC (ascending) functions

Task 5b: Find names of all persons that the author of the
document has either met or knows; sort the names in

descending order

PREFIX foaf. <http://xmIns.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>
SELECT DISTINCT ?name
FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE
{

?doc foaf:maker ?author .

{ ?author foaf:knows [foaf.name ?name] . }

UNION
{?author rel:hasMet [foaf:name ?name] . }

}
ORDER BY DESC (?name)

B
SPARQL FILTERs

- SPARQL FILTERSs restrict the solutions of a graph pattern
match according to the given expressions

- Expressions can be of different kinds, but they must
evaluate in a boolean value (true or false)

- The following slides illustrate some of the functions that
can be used for filtering the result set

Task 6: Find names of all the persons whose
birthday is unknown

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
PREFIX bio: <http://purl.org/vocab/bio/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?name
FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE {
?person rdf:type foaf:Person ; foaf:name ?name .
FILTER NOT EXISTS {
?person bio:event ?ev .
?ev rdf:type bio:Birth ; bio:date ?birthdate. }

Note: Function NOT EXISTS is introduced in SPARQL 1.1; if the
query does not work, it means you are using an old SPARQL engine

Task 7: Find names of all members of the
Dodds family

PREFIX foaf. <http://xmIns.com/foaf/0.1/>

SELECT ?name
FROM <http://www.ldodds.com/Idodds-knows.rdf>

WHERE

{

}

?person foaf:name ?name
FILIER regex(?name, "dodds", "i")

—

Filtering with regular expressions
Similar to SQL "LIKE"

Alternative:
FILTER strEnds(Icase(?name), “dodds”)

Task 7a: Find names of all the persons who have
Gmail email address

PREFIX foaf: <http://xmIns.com/foaf/0.1/>

SELECT ?name

FROM <http://www.ldodds.com/ldodds-knows.rdf>

WHERE

{
?person foaf:name ?name ; foaf:mbox ?mbox
FILTER regex(str(?mbox), "@gmail\\.com$”)

}

To learn more about the regular expression language check
this tutorial: http://regex.bastardsbook.com/

Task 8: Get all reviews with rating above 6 that were
created by a person named Jim
(filtering based on elements values)

PREFIX foaf: <http://xmIns.com/foaf/0.1/>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX rev: <http://www.purl.org/stuff/rev#>

SELECT “?review
FROM <http://www.cs.umd.edu/~hendler/2003/foaf.rdf>
WHERE {
?someone rdf:type foaf:Person;
foaf:name ?name FILTER regex(?name, "Jim", "i").

?someone foaf:made ?review . || sPARQL
?review rev:rating ?rating type casting

FILTER (xsd:decimal(?rating) >= "6"*xsd:decimal) .

L
Grouping and aggregating data

- GROUP BY allows for grouping the items in the result set
based on one or more variables and/or expressions

- There are various functions applicable at the group level:
SUM, COUNT, AVG, MIN, MAX and the like

- HAVING allows for selecting/filtering the query results at
the group level

- 1t is analogous to a FILTER expression, but operates over
groups, rather than individual solutions

Task 9: Find manufacturers who produce more than 10
different products and display the number of different
products they produce

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

SELECT ?manufacturer (COUNT(?product) AS ?count)
WHERE {
?product rdf:type <http://dbpedia.org/ontology/Device> ;
dbpedia-owl:manufacturer ?manufacturer .

Y
GROUP BY ?manufacturer

HAVING (COUNT(?product) > 10)

L
Other kinds of SPARQL queries

Besides the SELECT queries,

SPARQL supports three other query types:
- ASK
- DESCRIBE
- CONSTRUCT

ASK query

Aimed at testing whether a query pattern has a solution

No information is returned about the possible query
solutions, just whether a solution exists

An example: have Natalie Portman and Scarlett Johansson
ever played in the same movie?

PREFIX db: <http://dbpedia.org/ontology/>
ASK {
?movie
db:starring <http://dbpedia.org/resource/Natalie _Portman> ;
db:starring <http://dbpedia.org/resource/Scarlett_Johansson> .

L
ASK query

Results of an ASK query:
- Possible values: true/false
- JSON format of the results:

{
"head" : {},

"boolean" : true

}

DESCRIBE query

Returns a graph comprising all the available triplets
about the resource matched in the graph pattern (that is,
in the WHERE part of the query)

Example:

PREFIX db: <http://dbpedia.org/ontology/>
DESCRIBE ?movie
WHERE {
?movie
db:starring <http://dbpedia.org/resource/Natalie Portman> ;
db:starring <http://dbpedia.org/resource/Scarlett _Johansson> .

}

The query returns a graph comprising all the available triplets about the
movie(s) starred by both actresses

L
CONSTRUCT query

- It is used for creating a new RDF graph from an
existing one

- It is for RDF graph
somewhat the same as XSLT for XML data

Task 10: Map the data about musicians’ date and place
of birth from DBpedia to Schema.org vocabulary

PREFIX db-ont: <http://dbpedia.org/ontology/>

PREFIX schema: <http://schema.org/>
CONSTRUCT { / abbreviated form for rdf:type

?someone a schema:Person ;
schema:birthPlace ?birthplace ;
schema:birthDate ?birthdate ;
schema:jobTitle "Musician".

} WHERE {
?someone a db-ont:MusicalArtist ;
db-ont:birthDate ?birthdate :
db-ont:birthPlace ?birthplace .

Task 11: Establish aunt relationship

PREFIX schema: <http://schema.org/>
PREFIX rel: <http://purl.org/vocab/relationship/>
CONSTRUCT {
?child rel:hasAunt ?aunt.
} WHERE {
?child schema:parent ?parent.
?parent schema:parent ?grandparent .
?aunt schema:parent ?grandparent ;
schema:gender ?gender
FILTER (?parent != ?aunt && regex(?gender, “female”, “")) .

Queries over multiple distributed data sources

- All the queries we've seen so far were executed over
data originating from one data source (one RDF graph)

- However, queries could be executed over multiple data
sources

- In that case, we talk about federated queries

- SPARQL 1.1 introduces the SERVICE keyword for defining
additional data sources

Task 12: Find all the acquaintances of Leigh Dodds who
have the same surname as well known scientists

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
PREFIX db: <http://dbpedia.org/ontology/>
SELECT ?person
FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE {
http://www.ldodds.com#me> foaf.knows ?person .
?person foaf:surname ?surname .
SERVICE <http://dbpedia.org/spargl> {
?someone a db:Scientist ;
foaf:surname ?surname .

Unique identifier (IRI) for Leigh Dodds as given in the used data source (see FROM)

L
Learn SPARQL through examples

- Search RDF data with SPARQL
- http://www-128.ibm.com/developerworks/xml/library/j-sparqgl/

- SPARQL by Example
- http://www.cambridgesemantics.com/semantic-university/sparql-by-example

- A detailed SPARQL tutorial
- http://www.w3.0rg/2004/Talks/17Dec-sparql/

- SPARQL screencast
- http://linkeddata.deri.ie/node/58

- Bring existing data to the Semantic Web
- http://www-128.ibm.com/developerworks/xml/library/x-semweb.html

L
Learn SPARQL through examples

- RDF as self-describing data
- http://goo.gl/Gdr5LG

- SPARQL at the movies
- http://www.snee.com/bobdc.blog/2008/11/spargl-at-the-movies.html

- Bart (Simpson) blackboard queries
- http://goo.gl/aM9mcd ; http://goo.gl/z9q0IH

- Example SPARQL queries over 10+ different RDF datasets
- http://openuplabs.tso.co.uk/datasets

- SPARQL queries over Europeana repository
- http://europeana.ontotext.com/sparql

S
Some handy tools for learning SPARQL

- YASGUI — Yet Another SPARQL GUI

- http://vasqui.laurensrietveld.nl/

- Flint SPARQL Editor

- http://openuplabs.tso.co.uk/demos/sparqgleditor

- SPARQLer - an online SPARQL query tool
- http://www.sparqgl.org/sparqgl.html

- ARQ, a SPARQL processor for Jena framework
- http://jena.sourceforge.net/ARQ/

