Training and Testing

UROŠ KRČADINAC

EMAIL: <u>uros@krcadinac.com</u>

URL: http://krcadinac.com

Training and Testing

- Training data is used for building a ML model
- Testing data is used for measuring performance of a ML model
- Training and testing data should be different, mutually independent and created by random sampling

Supplying testing set in Weka

Pi	reproces	s Cla	assify					
Classifier								
Choose ZeroR								
Test options								
O Use training set								
 Supplied test set 		Set						
O Cross-validation	Folds	10						
O Percentage split % 66								
More options								

Training and Testing

• In case we have one dataset (for instance, in one file), we need to split the original dataset into subsets for training and testing

Dividing original dataset into testing and training in Weka

P	reproces	s	Classify					
Classifier								
Choose ZeroR								
Test options Use training set				C				
Supplied test set		Set						
O Cross-validation	Folds	10						
 Percentage split 	%	66						
More options								

Holdout method – different random seed values

- Random seed is a number (or a vector) used to initialize a pseudorandom number generator
- Testing J48 classifier results over the dataset *diabetes.arff*
- With *Percentage split* set to 90% for different *random seed* values we get different results:

Random seed	1	2	3	4	5	6	7	8	9	10
Accuracy	0.753	0.779	0.805	0.74	0.714	0.701	0.792	0.714	0.805	0.675

$$\bar{x} = \frac{\sum x_i}{n} = 0.7478$$
 $\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$ $\sigma = 0.046$

Changing random seed number in Weka

	Classifier evaluation options				
Preprocess Classif	Output model				
Classifier Choose J48 -C 0.25 -M 2	☑ Output per-class stats				
Test options	Output entropy evaluation measures				
 Use training set Supplied test set 	✓ Output confusion matrix				
Cross-validation Folds 10	Store predictions for visualization				
• Percentage split % 90	Output predictions				
More options	Output additional attributes				
(Nom) class	Cost-sensitive evaluation Set				
Start Stop	Random seed for XVal / % Split 1				
Result list (right-click for options) 22:22:35 - trees.J48 22:22:38 - trees.J48	Preserve order for % Split				
22:22:42 - trees.J48 22:22:46 - trees.J48	Output source code WekaClassifier				
22:22:50 - trees.J48 22:22:54 - trees.J48 22:22:58 - trees.J48	ОК				

Cross-validation

- Goal of cross-validation is:
 - to overcome the problem of overfitting
 - makes the predictions more general
- Improving the holdout method by reducing the variance among data

Cross-validation

- Includes:
 - Splitting the original dataset into k equal parts (folds)
 - Takes out one fold aside, and performs training over the rest k-1 folds and measures the performance
 - Repeats the process k times by taking different fold each time

10-fold cross-validation

- k = 10
- Dataset is divided into 10 equal parts (folds)
- One fold is set aside in each iteration
- Each fold is used once for testing, nine times for training
- Average the scores

Stratified cross-validation

• Ensures that each fold has the right proportion of each class value

Cross-validation in Weka

Cross validation- different random seed

- Testing results of J48 classifier over dataset *diabetes.arff*
- With *Cross-validation* set to *10 folds* for different *random seed* values we get different results:

Random seed	1	2	3	4	5	6	7	8	9	10
Accuracy	0.738	0.75	0.755	0.755	0.743	0.756	0.736	0.74	0.745	0.73

$$\bar{x} = 0.7448$$
 $\sigma = 0.0008$ Smaller deviation
and variance with
cross-validation

• Previous results for holdout method:

 $\bar{x} = 0.7478$ $\sigma = 0.046$

Recommendations and credits

Weka Tutorials and Assignments @ The Technology Forge

Link: <u>http://www.technologyforge.net/WekaTutorials/</u>

"Data Mining with Weka" and "More Data Mining with Weka": MOOCs from the University of Waikato. A self-paced session of "Data Mining with Weka" runs until 23 October June 2015.

• Link: <u>https://www.youtube.com/user/WekaMOOC/</u>

(Anonymous) survey for your comments and suggestions: http://goo.gl/cqdp3l

ANY QUESTIONS?

UROŠ KRČADINAC EMAIL: <u>uros@krcadinac.com</u> URL: <u>http://krcadinac.com</u>