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WHAT IS CLASSIFICATION?
§ A supervised learning task of determining the class of an 

instance; it is assumed that:
§ feature values for the given instance are known 
§ the set of possible classes is known and given

§ Classes are given as nominal values; for instance: 
§ classification of email messages: spam, not-spam 
§ classification of news articles: politics, sport, culture i sl.



BINARY AND MULTICLASS CLASSIFICATION

Based on the number of classes, classification can be:
§ binary – instances should be classified into 2 classes
§ multiclass – more than 2 classes are used for 

classifying instances  

In both cases, a classifier works in a rather similar 
manner: 
In multiclass classification, the classifier learns iteratively, 
so that in each iteration, it learns to differentiate instances 
of one class from all the other instances 



MULTICLASS CLASSIFICATION
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Source: https://www.coursera.org/learn/machine-learning
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CLASSIFICATION ALGORITHMS

There are numerous classification models/algorithms:

§ Logistic regression

§ Naïve Bayes

§ Algorithms from the Decision trees family

§ Algorithms from the Neural networks family

§ k-Nearest Neighbor (kNN)

§ Support Vector Machines (SVN)

§ …  



PERFORMANCE MEASURES

The most frequently used metrics:

§ Confusion Matrix

§ Accuracy

§ Precision and Recall

§ F measure

§ Area Under the ROC Curve



CONFUSION MATRIX

TP = True Positive

FP = False Positive

TN = True Negative

FN = False Negative

Serves as the basis for calculating other performance 
measures



ACCURACY

Accuracy is the percentage of correctly classified instances 

Accuracy = (TP + TN) / N

where: 

§ TP – True Positive; TN – True Negative

§ N – the total number of instances in the dataset



ACCURACY

In the case of highly unequal distribution of instances 
across classes (so called skewed classes), this measure is 
unreliable

An example: 

§ in the case of message classification as spam vs. not-spam, 
the training set might contain 0.5% of spam messages

§ if we apply a biased classifier that classifies each message as 
not-spam, we get very high accuracy – 99.5% 

§ obviously, this metric is unreliable and in the case of skewed 
classes, other metrics are needed



PRECISION AND RECALL

Precision = TP / # predicted positive = TP / (TP + FP)

Example:	out	of	all	the	messages	marked	as	spam,	the	percentage	
of	those	that	are	really	spammessages

Recall =  TP / # actual positive = TP/ (TP + FN)

Example:	out	of	all	the	messages	that	are	really	spam,	the	
percentage	of	those	that	have	been	detected/classified	as	spam



PRECISION VS. RECALL

In practice, one always needs to make a compromise 
between these two metrics: by increasing Recall, we 
decrease (though unwillingly) Precision, and vice versa 

Source: 
http://groups.csail.mit.edu/cb/struct2net/webserver/images/prec-v-recall-v2.png



F MEASURE

F measure combines Precision and Recall and allows for 
easier comparison of two or more algorithms

F = (1 + β2) * Precision * Recall / (β2 * Precision + Recall) 

Parameter β controls the extent to which we want to favor Recall over 
Precision 

In practice, F1 measure is typically used; it is called “balanced“ 
F measure as it equally weights Precision and Recall:

F1 = 2 * Precision * Recall / (Precision + Recall)



AREA UNDER THE ROC* CURVE (AUC)
§ It measures discriminatory power of a classifier, i.e., its 

ability to correctly differentiate instances of different classes

§ It is used for measuring performance of binary classifiers

§ It takes values from the 0-1 interval

§ In the case of random classification, AUC = 0.5; so, as the 
AUC value is greater than 0.5, the classifier is better

§ 0.7–0.8 is considered fair; 0.8–0.9 good; > 0.9 excellent 

*ROC = Receiver Operating Characteristic; 
http://en.wikipedia.org/wiki/Receiver_operating_characteristic



Specificity or
True Negative Rate (TNR)

TNR = TN/(FP + TN)

Sensitivity or True Positive Rate (TPR)
TPR = TP/(TP + FN)

AREA UNDER THE ROC CURVE

Source: http://goo.gl/Aeauuh
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ACKNOWLEDGEMENTS AND
RECOMMENDATIONS

MACHINE LEARNING @ STANFORD

§ Coursera: https://www.coursera.org/learn/machine-learning

§ Stanford YouTube channel: 
http://www.youtube.com/view_play_list?p=A89DCFA6ADACE599



RECOMMENDATIONS

§ [article] Visual Introduction to Machine Learning: 
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

§ [blog post] Choosing a Machine Learning Classifier:
http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/

§ [article] IU scientists use Instagram data to forecast top models at 
New York Fashion Week (http://goo.gl/ovepjx) 

§ [podcast] Data Stories podcast #27; topic: “Big Data Skepticism” 
(http://goo.gl/KKPGuW) 
§ the podcast mentioned a study that was aimed at the prediction of 

demographic characteristics of Facebook users based on their Likes 
(http://goo.gl/fykOyt) 



(Anonymous) questionnaire for your 
comments, suggestions, critiques:

http://goo.gl/cqdp3I


