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OUTLINE

§ What is clustering?
§ Application domains

§ K-Means clustering method

§ Expectation Maximization (EM) clustering method



WHAT IS CLUSTERING?
Clustering is an unsupervised ML task
§ its input is a set of instances/observations (described with a set 

of attributes) that should be grouped based on their similarity

§ there is no data about the desired/correct group for any of the 
the instances from the dataset



WHAT IS CLUSTERING?
This grouping of instances should be done in such a manner that for 
each instance the following is true: 

§ the instance is more similar to the instances from its group 
(cluster), than to instances from other groups (clusters)



HOW TO ESTIMATE SIMILARITY?

Similarity between instances is computed using one of

§ similarity measures (e.g., Correlation coefficient, Cosine 
similarity), or 

§ distance measures (e.g., Euclidian distance, Manhattan 
distance)



HOW TO ESTIMATE SIMILARITY?

Euclidian distance:

Manhattan distance:

p – number of attributes that describe the instances 
in the dataset

Image source:  http://goo.gl/9kgb4A



HOW TO EVALUATE THE RESULTS?
Unlike the classification task, for this task, there is no 
unique “correct” or best solution
§ how good/suitable a solution is, that depends upon the 

specific domain and the application case 
§ the same solution might be differently evaluated in different 

application cases

§ if it is to be done properly, domain experts need to evaluate 
the solution(s) produced by the model



An example illustrating 
different valid solutions for 
the same input dataset



APPLICATION DOMAINS

§ Market segmentation
§ Detection of groups/communities in social networks

§ Identifying patterns in user tracking data -> allows for 
learning about the ways people use an application

§ Grouping of objects (e.g., images or documents) to 
facilitate search / discovery

§ …



K-MEANS 
ALGORITHM



K-MEANS

One of the simplest and widely used clustering algorithm

It can be best understood through examples, so we will first 
have a look at an example

The example is taken from the course: https://www.coursera.org/course/ml



K-MEANS: AN EXAMPLE

Let’s suppose we have a 
dataset with instances  

described with 2 attributes 
(shown on x and y axes)



K-MEANS: AN EXAMPLE

Initialization: 
1) Choose the 
number of clusters, 
in this case K=2

2) Randomly select 
cluster centroids



K-MEANS: AN EXAMPLE

Iteration 1, Step 1:
assigning instances to 
one of the clusters 
based on their distance 
from the clusters’ 
centroids



K-MEANS: AN EXAMPLE

Iteration 1, Step 2:
compute new centroid 
for each cluster, by 
averaging the values 
of instances within the 
cluster



K-MEANS: AN EXAMPLE

Iteration 2, Step 1: 
re-assign instances to 
the clusters based on 
their distance from the 
(new) cluster centroids



K-MEANS: AN EXAMPLE

Iteration 2, Step 2:
re-compute cluster 
centroids 



K-MEANS: AN EXAMPLE

Iteration 3, Step 1: 
re-assign instances 
to the clusters 
(based on the new 
centroids) 



K-MEANS: AN EXAMPLE

Iteration 3, Step 2: 
re-calculate cluster 
centroids



K-MEANS: AN EXAMPLE

The algorithm is converging: 
additional iterations will not 
lead to any significant change; 
the process terminates



K-MEANS: THE ALGORITHM

Input:
§ K – the number of clusters
§ data set with m instances; each instance in this set is described 

with a vector of n attributes (x1, x2, …, xn)
§ max - max number of iterations (optional parameter)



K-MEANS: THE ALGORITHM

Steps:
1) Initial, random selection of a centroid for each cluster

§ centroids are chosen from the given dataset, i.e., K instances are 
randomly taken from the dataset and set as centroids

2) Repeat: 
1) Cluster assignment: for each instance i from the dataset, i = 1,m, 

identify the closest centroid and assign the instance to the 
corresponding cluster

2) Repositioning of centroids: for each cluster, compute a new 
centroid by averaging the values of instances assigned to that 
cluster 

until the algorithm starts converging or the number of 
iterations reaches max



K-MEANS: THE COST FUNCTION

The objective of the K-means algorithm is to minimize the 
cost function J:

x(i) – i-th instance in the training dataset, i=1,m

μc(i) – centroid of the cluster to which the instance x(i) has been assigned
c(i) – index of the cluster to which the instance x(i) is currently assigned
μj – centroid of the cluster j, j=1,K

This function is also known as distortion function



K-MEANS: THE COST FUNCTION

K-means algorithm minimizes the cost function J in the 
following manner:
§ the Cluster assignment phase minimizes J with respect to c(1),…, 

c(m), holding μ1,…, μK fixed

§ the Repositioning of centroids phase minimizes J with respect to 
μ1,…, μK, holding c(1),…,c(m) fixed



K-MEANS: EVALUATION

Criteria for evaluating the quality of the resulting clusters:

§ Distance between the centroids
§ the more distant the centroids are, the lower is the overlap between 

the clusters, and the quality of the clusters is considered higher

§ St. deviation of instances from the centroid
§ the lower the st. deviation of instances from the cluster centroid, the 

more tightly they are grouped, and clusters are considered better

§ Within cluster sum of squares
§ sum of squared differences between individual data points in a 

cluster and the cluster center; the smaller, the better



K-MEANS: 
INITIAL SELECTION OF CENTROIDS

§ Depending on how initial cluster centroids were chosen, the K-
means algorithm would converge quicker or slower

§ “Unlucky” selection of initial centroids may lead K-Means to get 
stuck in the so called local optima and produce poor results
§ this is a local minimum of the cost function

“Lucky” initialization “Unlucky” initializations that lead to a local minimum



K-MEANS: 
MULTIPLE RANDOM INITIALIZATIONS

It allows for avoiding situations that lead K-means in a local minimum

Consists of the following:
for i = 1 to n {//n is often in the range 50-1000

Randomly select the initial set of centroids;
Apply the K-Means algorithm;
Compute the cost function

} 
Choose the instance of the algorithm that produces the 
lowest value of the cost function

This approach gives good results if the number of clusters is relatively 
low (2 - 10); should not be used if the number of clusters is higher

Another option: K-means++ algoritam



K-MEANS: HOW TO CHOOSE K ? 

How to determine the number of clusters K?
§ In case we have domain knowledge about the phenomenon 

described by the data
§ Make an assumption about the number of clusters (K) based on the 

domain knowledge
§ Test the models with K-1, K, K+1 clusters and compare the error*

§ If we lack domain knowledge about the studied phenomenon
§ Start with a small number of clusters, and in multiple iterations test 

multiple models, where each model will have one cluster more than 
the previous one

§ In each iteration, compare the error* of the current and the previous 
model, and when the error reduction becomes insignificant, 
terminate the process

*E.g., within cluster sum of squared errors can be used for the comparison



K-MEANS: HOW TO CHOOSE K ? 

Optimal value 
for K

Source: http://i.stack.imgur.com/BzwBY.png

When we lack domain knowledge about the studied phenomenon



EXPECTATION 
MAXIMIZATION (EM) 
ALGORITHM



PROBABILISTIC CLUSTERING

EM is used for probabilistic clustering

From a probabilistic perspective
§ instances should not be placed categorically in one cluster or 

the other, 
§ instead, they have a certain probability of belonging to each 

cluster

The rationale: no finite amount of evidence is enough to 
make a completely firm decision on how to do the clustering



PROBABILISTIC CLUSTERING

This type of clustering has the following assumptions:

§ Each cluster is described by probability distribution(s)
§ there might be one distribution, common to all the attributes describing 

cluster members, or multiple distributions, one per each attribute

§ these distributions determine the probability of attribute values for the 
cluster members (instances)

§ In addition, not all clusters have equal likelihood: there is a 
probability distribution that reflects the clusters’ prior probability



PROBABILISTIC CLUSTERING

Let’s consider the simplest form of probabilistic clustering: 
§ instances are described with just one numeric attribute that is 

Normally distributed in all clusters (K clusters)

§ each cluster (Ci) has its specific mean (μi) and st. deviation (σi) 
– i.e., specific parameters of the Normal distribution

§ pi is the prior probability of the cluster Ci



PROBABILISTIC CLUSTERING

Let’s consider the simplest form of probabilistic clustering 
(cont.): 

Suppose we’ve been given a set of instances that originate from the 
previously described K clusters; however, we do not know:  
§ the specific cluster that each instance originates from
§ parameters of the model (μi, σi , pi , i=1,K).

The task/problem to be solved: 
based on the given set of instances, estimate
§ the parameters of the model (μi, σi , pi , i=1,K)
§ for each instance, the probability of belonging to each of the K 

clusters 



EM ALGORITHM

To solve the described problem, we can apply a procedure 
similar to the one used for the K-means algorithm:
1) start by defining the number of clusters (K) and randomly 

choosing the model parameters (μi, σi, pi, i=1,K)

2) for the given parameter values, compute, for each instance, the 
probability of belonging to each of the K clusters

3) use the computed probabilities to re-estimate the parameter 
values

Repeat steps 2) and 3) until the parameter values start to converge 

This procedure is the gist of the EM algorithm   



EM ALGORITHM

The EM algorithm consists of 2 key steps:
§ E (expectation) step – calculation of the cluster probabilities 

for each instance from the dataset; in this step we assume that 
we know the values of all the model parameters;

§ M (maximization) step – calculation of the model parameters; 
we aim to “maximize” the likelihood of the model given the 
available data 

These steps are repeated until the algorithm starts to converge



EM ALGORITHM: INITIALIZATION

The example is taken from the AI course: https://www.udacity.com/course/cs271

Initial cluster centroids, 
based on the initial 
values of the model 
parameters

assumption: K=2



EM ALGORITHM: E STEP

For each instance from the dataset xj (j=1,n), we compute 
the expectation that it belongs to the cluster Ci (i=1,K)

𝑒,- = 	 𝑝, ∗ 𝑃 𝑥- 𝐶,

𝑃 𝑥- 𝐶, is computed using the probability density formula of the 
Normal distribution f(x;	µ,	σ)

Reminder: in this step we assume that the values of all the model 
parameters – µi,	σi,	pi,	i=1,K	– are known



EM ALGORITHM: E STEP

The thickness of a line indicates the probability that an instance 
belongs to a certain cluster, i.e., it reflects the computed eij value



EM ALGORITHM: M STEP

In this step, values of all the model parameters are re-computed

prior probability: 𝑝, = ∑ ;<=
>- 	

mean: 𝜇, = 	
∑ ;<=	∗@==
∑ ;<==

variance: σi
2 =		

∑ ;<== ∗(@= AB< )C

∑ ;<==



EM ALGORITHM: M STEP

Cluster centroids change their position based on the newly 
computed values of the model parameters



EM ALGORITHM: CONVERGENCE

The two steps of the EM algorithm are repeated until the increase 
in the overall log-likelihood of the model becomes negligible:

log 𝑃 𝑥 =	 log ∑ (𝑝, ∗ 𝑃(𝑥|𝐶,)),

Typically, the log-likelihood will increase very sharply over the first 
few iterations, and then converge rather quickly to a point that is 
virtually stationary



EM ALGORITHM: CONVERGENCE

The state of convergence of the model parameters



EM ALGORITHM

EM algorithm is guaranteed to converge to a maximum of the log-
likelihood function

However, this is a local maximum that may not necessarily be the 
same as the global maximum

For a higher chance of obtaining the global maximum, the whole 
procedure should be repeated several times, with different initial 
guesses for the parameter values

At the end, we choose the configuration that produces the largest 
overall log-likelihood



EM ALGORITHM

We’ve considered the simplest EM application case; but EM 
can be equally well applied to more complex problems

§ Instances can be described with more than one numeric attribute 
as long as independence between attributes is assumed 
§ individual probabilities for all the attributes are multiplied to obtain the 

joint probability for the instance, just as in the Naive Bayes method

§ Attributes can be nominal, as well 
§ In that case, Normal distribution has to be abandoned 
§ nominal attribute with v possible values is characterized by v

numbers representing the probability of each value



Coursera:
https://www.coursera.org/learn/machine-learning

Stanford YouTube channel: 
http://www.youtube.com/view_play_list?p=A89DCFA6ADACE599

ACKNOWLEDGEMENT AND RECOMMENDATION



ACKNOWLEDGEMENT AND RECOMMENDATION

URL: https://www.udacity.com/course/intro-to-artificial-intelligence--cs271



(Anonymous) questionnaire for your 
critiques, comments, suggestions:

http://goo.gl/cqdp3I


