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OVERVIEW

• What is Text Mining (TM)?

• Why is TM relevant? Why do we study it?

• Application domains

• The complexity of unstructured text (the origin of TM challenges) 

• Bag-of-words representation of text

• Vector Space Model
• Methods/techniques for text pre-processing

• Assessing the relevancy of individual words/phrases

• Measuring document similarity: Cosine similarity  
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WHAT IS TEXT MINING (TM)?

The use of computational methods and techniques to extract 
high quality information from text

A computational approach to the discovery of 
new, previously unknown information and/or knowledge 
through automated extraction of information from 
often large amounts of unstructured text
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WHY IS TM RELEVANT / USEFUL ?
• Unstructured text is present in various forms, and in huge 

and ever increasing quantities: 
• books, 
• financial and other business reports, 
• various kinds of business and administrative documents,
• news articles, 
• blog posts, 
• wiki, 
• messages/posts on social networking and social media sites, 
• …

• It is estimated that ~80% of all the available data are 
unstructured data
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WHY IS TM RELEVANT / USEFUL?

• To enable effective and efficient use of such huge quantities of 
textual content, we need computational methods for
• automated extraction of information from unstructured text
• analysis and summarization of extracted information

• TM research and practice are focused on the development, 
continual improvement and application of such methods
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TM APPLICATION DOMAINS

• Document classification*

• Clustering / organizing documents

• Document summarization 

• Visualization of document space (often aimed at facilitating 
document search)

• Making predictions (e.g., predicting stock market prices based 
on the analysis of news articles and financial reports)

• Content-based recommender systems (for news articles, 
movies, books, articles, …)

*The term document refers to any kind of unstructured piece of text: blog post, news article, 
tweet, status update, business document, …
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THE COMPLEXITY OF UNSTRUCTURED TEXT

• In general, interpretation / comprehension of unstructured 
content (text, images, videos) is (often) easy for people, but 
very complex for computer program

• In particular, difficulties with automated text comprehension 
are caused by the fact that the human / natural language:

• is full of ambiguous terms and phrases

• often strongly relies on the context and background knowledge 
for defining and conveying meaning

• is full of fuzzy and probabilistic terms and phrases

• strongly based on commonsense knowledge and reasoning 

• is influenced by and is influencing people’s mutual interactions
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ADDITIONAL CHALLENGES FACED BY TM

• The use of supervised machine learning (ML) methods for TM 
is often very expensive 
• This is caused by the need to prepare high number of annotated 

documents to be used as the training dataset  
• Such a training set is essential for, e.g., document classification or  

extraction of entities, relations and events from text

• High-dimension of the attribute space: 
• Documents are often described with numerous attributes, which 

further impedes the application of ML methods
• Most often, attributes are either all terms or a selection of terms 

and/or phrases from the collection of documents to be analyzed
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BAG OF WORDS REPRESENTATION OF TEXT

• Considers text a simple set/bag of words

• Based on the following (unrealistic) assumptions:
• words are mutually independent, 
• word order in text is irrelevant 

• Despite its unrealistic assumptions and simplicity, this 
approach to text modeling proved to be highly effective, 
and is often used in TM
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BAG OF WORDS REPRESENTATION OF TEXT
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Unique words from the corpus are used to create the 
corpus ‘dictionary’; then, each document from the corpus is 
represented as a vector of (dictionary) word frequencies



BAG OF WORDS MODEL: 
COMPUTING DOCUMENTS’ SIMILARITY
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Source: 
http://www.cs.uni.edu/~okane/source/ISR/isr.html



VECTOR SPACE MODEL

• Generalization of the Bag of Words model

• Each document from the corpus* is represented as a multi-
dimensional vector
• Each unique term from the corpus represents one dimension of the 

vector space
• Term can be a single word or a sequence of words (phrase)
• The number of unique terms in the corpus determines the dimension 

of the vector space

*corpus refers to a collection of documents to be processed / analyzed
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VECTOR SPACE MODEL

• Vector elements are weights associated with individual terms; 
these weights reflect the relevancy of the corresponding terms in 
the given corpus

• If a corpus consists of n terms (ti, i=1,n), document d from that 
corpus would be represented with the vector: d = {w1,w2,…,wn }, 
where wi are weights associated with terms ti
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VECTOR SPACE MODEL

• Distances among vectors in this multi-dim. space represent the 
relationships among the corresponding documents

• It is assumed that documents that are ‘close’ to one another in 
this multi-dim. space, are also ‘close’ (similar) in meaning
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VSM: TERM DOCUMENT MATRIX

• In VSM, corpus is represented in the form of Term Document 
Matrix (TDM), i.e., an m x n matrix with following features:
• Rows (i=1,m) represent terms from the corpus
• Columns (j=1,n) represent documents from the corpus
• Cell ij stores the weight of the term i in the context of the document j

Image source:
http://mlg.postech.ac.kr/research/nmf
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VSM: TEXT PREPROCESSING

• Before creating the TDM matrix, documents from the corpus 
need to be preprocessed

• Rationale / objective: to reduce the set of words to those that 
are expected to be the most relevant for the given corpus

• Preprocessing (often) includes:
• Normalizing the text
• Removing terms with very small / high frequency in the given 

corpus
• Removing the so-called stop-words
• Reducing words to their root form through stemming or 

lemmatization
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NORMALIZATION OF TEXT

• Objective: transform various forms of the same term into a 
common, ‘normalized’ form
• E.g.: Apple, apple, APPLE -> apple

Intelligent Systems, Intelligent systems, Intelligent-systems
-> intelligent systems

• How it is done:
• Using simple rules:

• Remove all punctuation marks (dots, dashes, commas,…)
• Transform all words to lower case

• Using a dictionary, such as WordNet, to replace synonyms with a 
common, often more general, concept
• E.g., “automobile, car” -> vehicle
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REMOVING HIGH AND LOW FREQUENCY TERMS

• Empirical observations (in numerous corpora):
• Many low frequency words 
• Only a few words with high frequency

• Formalized in the Zipf’s rule: 
the frequency of a word in a given corpus is inversely proportional to 
its rank in the frequency table (for that corpus)
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ILLUSTRATION OF THE ZIPF’S RULE
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Word frequency in the Brown Corpus of American English text 
source: http://nlp.stanford.edu/fsnlp/intro/fsnlp-slides-ch1.pdf



IMPLICATIONS OF THE ZIPF’S RULE

• Words in the upper part of the frequency table comprise a significant 
proportion of all the words in the corpus, but are semantically almost  
useless

• Examples: the, a, an, we, do, to

• On the other hand, words towards the bottom of the frequency table 
are semantically rich, but are of very low frequency
• Example: dextrosinistral

• The rest of the words are those that represent the corpus the best and 
thus should be included in the VSM model
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Image source:
http://www.dcs.gla.ac.uk/Keith/Chapter.2/Ch.2.html

Remove highly 
infrequent words

Remove words that 
do not bear meaning

IMPLICATIONS OF THE ZIPF’S RULE



STOP-WORDS

• An alternative or a complementary way to eliminate words that are 
(most probably) irrelevant for corpus analysis

• Stop-words are those words that (on their own) do not bear any 
information / meaning

• It is estimated that they represent 20-30% of words in any corpus

• There is no unique stop-words list
• Frequently used lists are available at: http://www.ranks.nl/stopwords

• Potential problems with stop-words removal: 
• the loss of original meaning and structure of text
• examples: “this is not a good option” -> “option”

“to be or not to be” -> null
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LEMMATIZATION AND STEMMING

• Two approaches to decreasing variability of words by reducing 
different forms of words to their basic / root form

• Stemming is a crude heuristic process that chops off the ends of 
words without considering linguistic features of the words 
• E.g., argue, argued, argues, arguing -> argu

• Lemmatization refers to the use of a vocabulary and morphological 
analysis of words, aiming to return the base or dictionary form of a 
word, which is known as the lemma 

• E.g., argue, argued, argues, arguing -> argue
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VSM: COMPUTING TERMS’ WEIGHTS

• There are various approaches for determining the terms’ 
weights

• Simple and frequently used approaches include:
• Binary weights
• Term Frequency (TF)
• Inverse Document Frequency (IDF)
• TF-IDF
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VSM: BINARY WEIGHTS

• Weights take the value of 0 or 1, to reflect the presence (1) or 
absence (0) of the term in a particular document

text information identify mining mined is useful to from apple delicious

Doc1 1 1 1 1 0 1 1 1 0 0 0
Doc2 1 1 0 0 1 1 1 0 1 0 0
Doc3 0 0 0 0 0 1 0 0 0 1 1

Example:
• Doc1: Text mining is to identify useful information.
• Doc2: Useful information is mined from text.
• Doc3: Apple is delicious.
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VSM: TERM FREQUENCY

• Term Frequency (TF) represents the frequency of the term in a 
specific document

• The underlying assumption: the higher the term frequency in a 
document, the more important it is for that document

TF(t) = c(t,d) 

c(t,d) – the number of occurrences of the term t in the document d
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VSM: INVERSE DOCUMENT FREQUENCY

• The underlying idea: assign higher weights to unusual terms, 
i.e., to terms that are not so common in the corpus

• IDF is computed at the corpus level, and thus describes corpus 
as a whole, not individual documents

• It is computed in the following way:

IDF(t) = 1 + log(N/df(t))

N – number of documents in the corpus
df(t) – number of documents with the term t
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VSM: TF–IDF
• The underlying idea: value those terms that are not so common 

in the corpus (relatively high IDF), but still have same 
reasonable level of frequency (relatively high TF)

• The most frequently used metric for computing term weights in 
a VSM

• General formula for computing TF-IDF:
TF-IDF(t) = TF(t) x IDF(t)

• One popular ‘instantiation’ of this formula:
TF-IDF(t) = tf(t) * log(N/df(t))
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VSM: ESTIMATING SIMILARITY OF DOCUMENTS

• Key question: which metric to use for estimating the similarity of 
documents (i.e., vectors that represent documents)?

• The most well known and widely used metric is Cosine similarity

Image source: 
http://www.ascilite.org.au/ajet/ajet26/ghauth.html
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COSINE SIMILARITY

Image source: 
http://blog.christianperone.com/?p=2497

cos(di,dj)	=	Vi x	Vj /	(||Vi||	||Vj||)

Vi and Vj are vectors representing documents di and dj
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VSM: PROS AND CONS

• Advantages
• Intuitive
• Easy to implement
• Empirically proven as highly effective

• Drawbacks
• Based on the unrealistic assumption of words mutual 

independence 
• Tuning the model’s parameters is often challenging and time 

consuming; this includes selection of method for: 
• determining the terms’ weights 
• computing document (vector) similarity
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TEXT PROCESSING IN JAVA

Well known and widely used Java frameworks for text 
processing and analysis:

• Stanford CoreNLP: http://nlp.stanford.edu/software/corenlp.shtml
• Apache OpenNLP: http://opennlp.apache.org/
• LingPIPE: http://alias-i.com/lingpipe/
• GATE: http://gate.ac.uk/
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