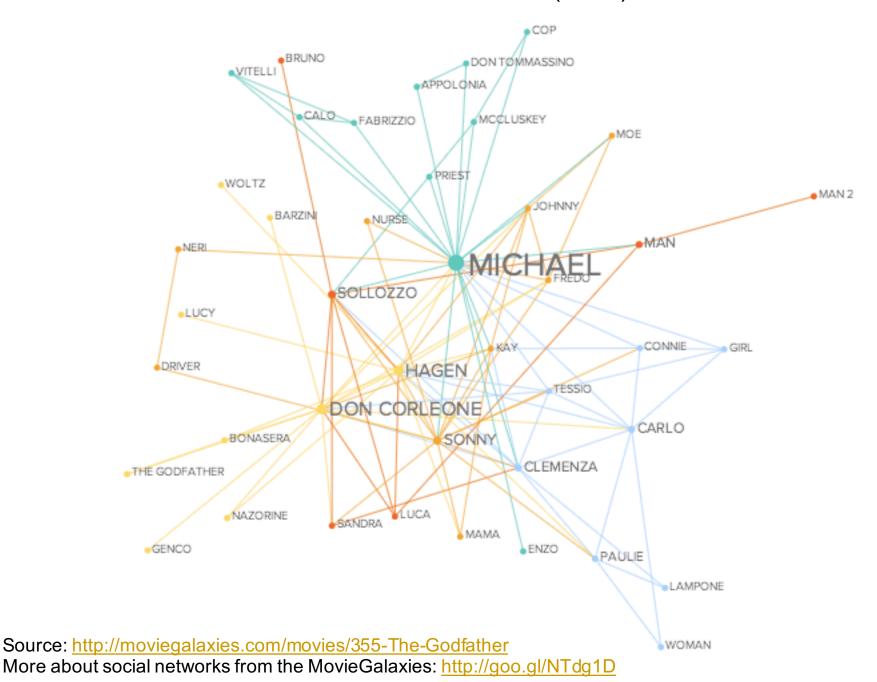
SOCIAL NETWORK ANALYSIS (SNA)

JELENA JOVANOVIC

EMAIL: JELJOV@GMAIL.COM


WEB: <u>HTTP://JELENAJOVANOVIC.NET</u>

SOCIAL NETWORK ANALYSIS

- Data about members of a social network / group / community and their mutual relationships are presented in the form of a (social) graph
 - each member of the network is represented as a node (vertex) in the graph
 - relationships between the members are edges in the graph
- The analysis is done by applying different measures and algorithms to the social graph

Social network of characters in The Godfather (1972) movie

MODELING A SOCIAL NETWORK

Edges of a (social) network typically represent:

- Some form of social relation (e.g., friendship, family relations, business connections, ...), or
- Some form of social interaction (e.g., exchange of chat messages, email exchange, ...), or
- Sharing a common feature (e.g., preference for the same type of movies / books / food; graduation from the same school, ...)

MODELINGA SOCIAL NETWORK

Edges can have weights that quantify the intensity or strength of the relationship between network actors

Weights can be based on:

- Frequency of interaction (quantified via e.g., the number of messages exchanged in a certain time period)
- Subjective assessment of the strength of connection between actors
- Physical proximity or distance between the actors
- Certain combination of the above mentioned elements

• • • •

WHAT QUESTIONS CAN BE ANSWERED WITH SNA?

- Who are the central / most influential members of the network?
- Which groups can be detected in the network? To what extent is the network clustered into smaller, well connected groups?
- How is the network evolving? Will it grow or diminish in size and eventually cease to exist?
- How are ideas/knowledge/viruses/... spreading through the network?

SNA APPLICATION EXAMPLE: DETECTION OF THE MOST INFLUENTIAL NETWORK MEMBERS

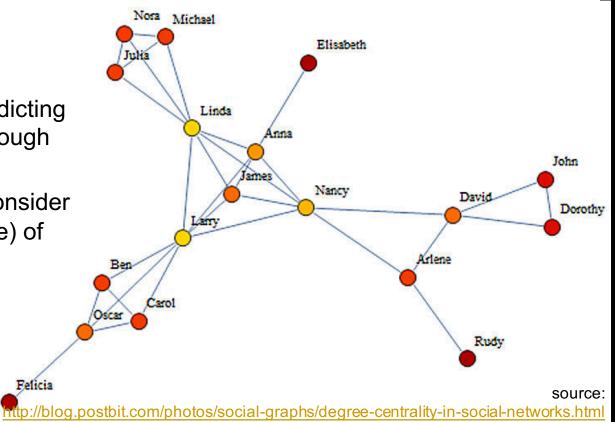
 \sim

WHO ARE THE MOST INFLUENTIAL NETWORK MEMBERS?

Influence (and power) of an actor in a network originates in his/her advantageous network position

Key indicators of one's advantageous network position are high values of the following SNA metrics:

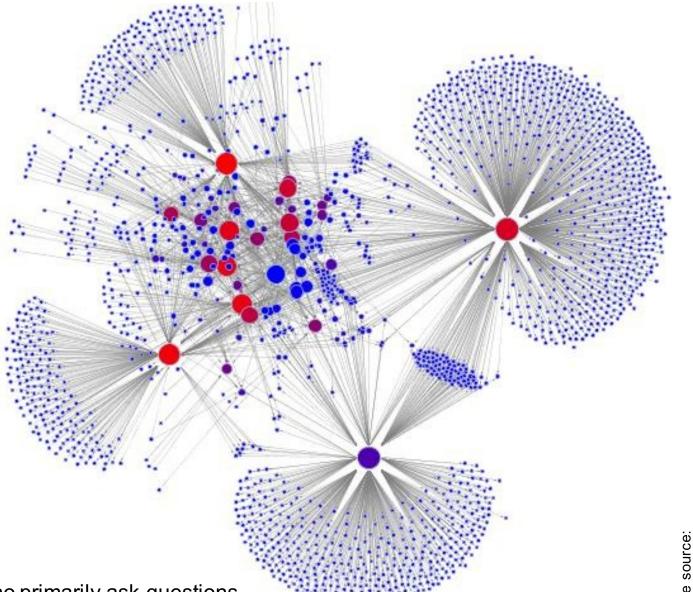
- Degree centrality
- Betweenness centrality
- Closeness centrality


DEGREE CENTRALITY

It is the ratio of the actor's degree (= number of immediate neighbors) and the total number of actors in the network

Example (figure): the lighter the color of a node, the higher its degree centrality is

Useful metric for estimating/predicting the spreading of information through the network


Potential drawback: does not consider the position (influence/relevance) of the neighboring nodes

Network formed by the members of Java discussion forum

Example of a network where *degree centrality* identifies dominant actors (hubs)

More precisely, since this is a directed network, we distinguish: *indegree* (number c incoming links) and *outdegree* (number of outgoing connections)

Blue nodes are those who primarily ask questions, while red are those who primarily provide answers

BETWEENNESS CENTRALITY

- Enables the detection of actors who often appear as intermediaries / middlemen connecting other network members
- In addition, it allows for the detection of weak points in the network, where the network might break

SIG ABERREARDO

BETWEENNESS CENTRALITY


Even though actors with high betweenness have important role of network *brokers*, typically they are not among the prominent network members (often left unnoticed)

Reason: they are often positioned, not in the center of any of the groups in the network, but on the periphery of two or more groups

CLOSENESS CENTRALITY

This metric represents average closeness / distance of the given actor from all the other actors in the network

High closeness centrality is typical for actors positioned close to the centers of local clusters (groups) in a larger social network

Source: http://www.activatenetworks.net/who-is-central-to-a-social-network-it-depends-on-your-centrality-measure/

CLOSENESS CENTRALITY

Some characteristics of this metric:

- It indicates how successful an actor can be in spreading information through the network
- Actors with high closeness centrality tend to be
 - Influential members of the local groups they belong to
 - Unknown or weakly known at the level of the network as a whole (in spite of being locally influential)
 - Efficient in spreading information through the part of the network they belong to

APPLICATION DOMAINS

"TRADITIONAL" APPLICATION DOMAINS

Organizations: improving communication channels within an organization, as well as in the larger network that includes business partners and clients

Marketing: identification of central network actors so that they can be 'employed' to better promote products / services / ...

Telecommunications: optimization of the structure and capacity of telecommunication networks

Police and investigation agencies: identification of central members of different criminal / terrorist groups and networks

NEW APPLICATION DOMAINS: ONLINE SOCIAL NETWORKS

Popularity and application of SNA methods and techniques have substantially increased in the last couple of years due to:

- Omnipresence of diverse kinds of online social networks that
 - generate huge quantities of data that can be used for analysis
 - need to understand and manage network features and network dynamics
- Substantial increase in the processing power of computers, enabling today's computers to quickly perform complex and/or computationally demanding SNA algorithms

ONLINE SOCIAL NETWORKS

Depending on the type of online social network, SNA can be applied for:

- Recommendation of potentially interesting / relevant friends / contacts, groups, events
- Detection of influential network members who could help in sharing and/or popularizing certain ideas, news, products, events,...
- Identification of experts in a specific subject area

• ...

ENTERPRISE SOCIAL SOFTWARE

- Increasingly present in companies (of various sizes)
 - E.g., Work.com, SocialCast.com, Yammer.com
- Includes diverse kinds of social software
 - Wiki, blog, forum, micro-blog, chat,...
- Acts as a source of huge amounts of data about interactions among the members of an organization, including:
 - direct interaction (e.g., exchange of messages in a discussion forum or chat)
 - indirect interaction (e.g., editing of the same wiki page, commenting the same blog post)
- SNA applied to these data allows for the detection of informal groups, influential individuals and groups, and the like

Some interesting things to read / watch

- [news article] Degrees of separation: After all, it is who you know (<u>http://goo.gl/aPWip5</u>)
- "Social Physics: How Good Ideas Spread" by Sandy Pentland, Talks at Googl: <u>https://www.youtube.com/watch?v=HMBI0ttu-Ow</u>
- "The hidden influence of social networks", TED talk by Nicholas Christakis: <u>https://www.youtube.com/watch?v=2U-tOghblfE</u>
- [talk] Duncan Watts on Network Analysis, Small World networks, Big Data and the like: <u>https://www.youtube.com/watch?v=4YoOCLoJn6U</u>