
RDF, RDFS &
JSON-LD

Nikola Milikić Jelena Jovanović
nikola.milikic@fon.bg.ac.rs jeljov@fon.bg.ac.rs

What is RDF?

• Resource Description Framework

• W3C* standard for describing resources on the Web

• One of the key standards that Web of Data / Semantic Web
is based upon

*W3C = World Wide Web Consortium (https://www.w3.org/)

Open Technologies and standards for the

Web of Data / Semantic Web

JSON-LD,
Turtle, N3, XML

What is RDF?

• RDF is the data model for the Web of data /
Semantic Web

• Simple model, based on a graph

• Describes resources and relations between resources

person "Jason Smith"

subject object
predicate

RDF is based on triples

name

RDF is a graph

• Nodes represent subjects and objects of triples

• Nodes are depicted as

• ellipses when they represent resources

• rectangles when they represent literals

• Directed edges represent predicates: properties and relations

Example of an RDF graph

person1 "programmer"occupation

"1980-12-12"

"Jason Smith"

birthDate

name

company1 "Digital Bazaar"name

affiliation

Uniquely identifying resources

• In the global data repository on the Web, we must identify
resources globally and uniquely

• This is a key prerequisite for linking data on the Web, and
realizing the Web of Data

• To uniquely identify resources on the Web, we use URIs
(usually starting with "http://")

Note the difference:
URL – Uniform Resource Locator location
URI – Uniform Resource Identifier identifier
IRI – International Resource Identifier identifier

RDF graph uniquely identified resources and
connections

http://example.com/
person1 "programmer"http://schema.org/

occupation

"1980-12-12"

"Jason Smith"

http://schema.org/birthDate

http://schema.org/name

http://example.
com/

company1
"Digital Bazaar"http://schema.org/

name

http://schema.org/affiliation

Using vocabularies

@vocab: "http://schema.org/"

person1 "programmer"occupation

"1980-12-12"

"Jason Smith"

birthDate

name

company1 "Digital Bazaar"name

affiliation

Triplet form of RDF graph

person1 name "Jason Smith" .

person1 occupation "programmer" .

person1 birthDate "1980-12-12" .

company1 name "Digital Bazaar" .

person1 affiliation company1 .

@vocab: "http://schema.org/"

Simple Rules

• Use URIs to identify resources and connections

• When the same URI is used on multiple places, all those
occurrences (of the URI) refer to the same resource

• This enables for easy interlinking of dispersed data about a
particular resource (i.e. data stored and maintained in different
repositories)

RDFS

RDFS

• RDFS - RDF Schema

• Adding semantics to RDF

• Creating data schema – vocabulary

• Vocabulary is defined using the same data model

Defining Classes

Person rdf:type rdfs:Class .
person1 rdf:type Person .

Person

rdf:type

person1 "programmer"occupation

"1980-12-12"

"Jason Smith"

birthDate

name

company1 "Digital Bazaar"name

affiliation

Company

rdf:type

model

data

@vocab: "http://schema.org/"

Defining properties

Person

rdf:type

person1 "programmer"occupation

"1980-12-12"

"Jason Smith"

birthDate

name

company1 "Digital Bazaar"name

affiliation

Companyaffiliation

rdf:type

model

data

@vocab: "http://schema.org/"

domain rangeproperty

Defining properties

Person Companyaffiliation

affiliation rdf:type rdf:Property .
affiliation rdfs:domain Person .
affiliation rdfs:range Company .

@vocab: "http://schema.org/"

Defining properties

Domain represents the class (or multiple classes) a property can be
used on

Range represents the class (or multiple classes) that defines the type
of the property’s value

Both domain and range are optional:

• If domain is not defined, property can be used on any class

• If range is not defined, value of the property can be of any class

Not the same as with OO languages

• Properties are not dependent on classes, they are first class
citizens (not part of classes)

• Properties can be extended, they can have their own hierarchy of
sub-properties

• Properties can not be overridden on a lower level of hierarchy (by
sub-properties)

RDF(S) vocabulary

RDF and RDFS vocabularies

Prefixes: rdf i rdfs

Classes (some of them)

• rdfs:Class

• rdfs:Property

• rdfs:Literal

Properties (some of them)

• rdf:type (resurse is an
instance of certain class)

• rdfs:subClassOf (class is
a subclass of another
class)

• rdfs:subPropertyOf
(subproperty)

• rdfs:seeAlso (reference to
a description)

• rdfs:domain (domain of a
property)

• rdfs:range (range of a
property)

Schema.org

Schema.org is a collaborative, community effort with a mission to
create, maintain, and promote schemas for structured data in Web
pages, email messages, and Internet in general.

It is initiated and supported by Google, Microsoft, Yahoo and
Yandex

The vocabulary cover entities, relationships between entities and
actions, and can be extended through a well-documented extension
model

Schema.org

Some of the class defined in Schema.org:

• Different kinds of creative work: CreativeWork, Book, Movie,
MusicRecording, Recipe, TVSeries …

• Different kinds of multimedia content: AudioObject, ImageObject,
VideoObject

• Event

• Organization

• Person

• Place, LocalBusiness, Restaurant …

• Product, Offer, AggregateOffer

• Review, AggregateRating

• Action

For the entire list, check:
http://schema.org/docs/schemas.html

JSON-LD

JSON - JavaScript Object Notation

• Lightweight text-based format for data exchange

• Simple

• for developers to use it

• for machines to process it

• Independent of programming languages

JSON object

{

"title" : "The Matrix",

"producer" : "Joel Silver",

"release_year" : 1999

}

A set of name-value pairs

JSON object

• A set of name-value pairs

• JSON object starts with an open brace ({), and ends with a
closing brace (})

• Name and value are separated by colon (:), and name-value
pairs are separated with comma (,)

JSON array

[
{

"title" : "The Matrix",
"producer" : "Joel Silver",
"release_year" : 1999

},
{

"title" : "Equilibrium",
"producer" : [

{
"name" : "Joel Silver"

},
{

"name":"Lucas Foster"
}

],
"release_year" : 1999

}
]

JSON array

• JSON array represents an ordered sequence of values.

• Starts with an opening square bracket [, and ends with a closing
square bracket]

• Values are separated by comma

JSON-LD

• Syntax for serializing RDF data into JSON format

• The primary reason for its development was to facilitate:

• use of Linked Data in Web-based programming environments,

• development of interoperable Web services, and

• storage of Linked Data in JSON-based repositories (e.g.
MongoDB, ElasticSearch, etc.)

• It is compatible with other Web of Data / Semantic Web
technologies (e.g. SPARQL)

JSON-LD

In addition to all the features JSON provides, JSON-LD introduces:

• a mechanism for universal identification of JSON objects based
on IRIs

• a way to disambiguate keys shared among different JSON
documents by mapping them to IRIs via a context

• a mechanism in which a value in one JSON object may refer to
another JSON object on a different Web site

• the ability to annotate strings with the language tag

JSON-LD keywords

@id – for uniquely identifying things described in a document;
identifiers are typically IRIs

@type – for setting the data type of a node

@context – for defining abbreviated names (terms) for vocabulary
elements (classes, properties), which are used throughout a JSON-
LD document

@language – for specifying the language of a particular string value

Example JSON snippet

{

"name": "Jason Smith",

"homepage": "http://jason.smith.org/",

"image": "http://jason.smith.org/images/jason.png"

}

Example JSON-LD snippet

{

"http://schema.org/name": "Jason Smith",

"http://schema.org/url": {

"@id": "http://jason.smith.org/"

},

"http://schema.org/image": {

"@id": "http://jason.smith.org/images/jason.png"

}

}

The '@id' keyword
means 'This value is an
identifier, that is, an IRI'

Every property is unambiguously identified by its IRI (e.g.
http://schema.org/name).
Developers and programs can use the IRI to look up the property definition;
this process is called IRI dereferencing.

Using @context element

@context is used to map terms to IRIs

{

"@context": {

"name": "http://schema.org/name",

"image": {

"@id": "http://schema.org/image",

"@type": "@id"

},

"homepage": {

"@id": "http://schema.org/url",

"@type": "@id"

}

}

}

'image' is shorthand for
'http://schema.org/image'

value associated with 'image' should be
interpreted as a unique identifier (IRI)

Defining @context inline

{

"@context": {

"name": "http://schema.org/name",

"image": {

"@id": "http://schema.org/image",

"@type": "@id"

},

"homepage": {

"@id": "http://schema.org/url",

"@type": "@id"

}

},

"name": "Jason Smith",

"homepage": "http://jason.smith.org/",

"image": "http://jason.smith.org/images/jason.png"
}

Defining @context externally

{

"@context": "http://json-ld.org/contexts/person.jsonld",

"name": "Jason Smith",

"homepage": "http://jason.smith.org/",

"image": "http://jason.smith.org/images/jason.png"

}

Defining the context in a separate document allows for reuse of the
document definition and term-to-IRI mappings.

Defining resource type (class)

• The type of a particular node can be specified using the @type
keyword

• Types are uniquely identified with IRIs; these originate from
vocabularies, such as schema.org

{

...

"@id": "http://example.org/places#BrewEats",

"@type": "http://schema.org/Restaurant",

...

}

Defining resource type (class)

A node can be assigned more than one type by using a JSON array:

{
...
"@id": "http://example.org/places#BrewEats",
"@type": [

"http://schema.org/Restaurant",
"http://schema.org/Brewery"

],
...

}

Defining resource type (class)

The value of an @type key may also be a term defined in the active
context:

{

"@context": {

...

"Restaurant": "http://schema.org/Restaurant",

"Brewery": "http://schema.org/Brewery"
},

"@id": "http://example.org/places#BrewEats",

"@type": [

"Restaurant",

"Brewery"
],

...

}

Defining vocabulary

If all properties and types come from the same vocabulary, keyword
@vocab allows for defining the common namespace for all terms

{

"@context": {
"@vocab": "http://schema.org/"

},
"@id": "http://example.org/places#BrewEats",
"@type": "Restaurant",

"name": "Brew Eats"
...

}

Defining vocabulary

If we need to use more than one vocabulary, we can associate each
vocabulary with a prefix (known as compact IRI)

{
"@context": {

"dbo": "http://dbpedia.org/ontology/"

"schema": "http://schema.org/"

...
},
"@type": "dbo:Person",
"schema:jobTitle": "Financial Manager",
...

}

schema:jobTitle expands into IRI http://schema.org/jobTitle

dbo:Person expands into IRI http://dbpedia.org/ontology/Person

Example 1

There is a class Person.

Person can have an attribute name.

There is a class Movie.

Movie can have an attribute title that is a string,
and an attribute director that is a person who
directed the movie.

There is a movie titled "Interstellar". Name of the
movie director is "Christopher Nolan".

Example 1 - Graph

"Interstellar"

ex:movie1

rdf:type

xsd:string

ex:title

ex:Movie ex:Person

ex:title

xsd:string

ex:name

ex:director

ex:person1ex:director

"Christopher Nolan"

ex:name

model

data

@vocab: "http://example-vocab.com/"

rdf:type

Example 1 – JSON-LD

{
"@context:": {

"@vocab": "http://example-vocab.com/"
},
"@id": "http//example-vocab.com/movie1",
"@type": "Movie",
"title": "Interstellar",
"director": {

"@type": "Person",
"@id": "http://example-vocab.com/person1",
"name": "Christopher Nolan"

}
}

Example 2

There are Events that can be described with name and
location.

Film Festival is a kind of Event. Film Festivals have their
start date and end date.

There are, also, Films. A Film can have a name, a director,
and length. Film can, also, be screened on a Film Festival.
Documentary is a kind of Film.

Free Zone is the name of the Film Festival that took place
in Belgrade, from 10.11.2016 till 15.11.2016. Documentary
film Tomorrow, directed by Malani Loren and Siril Dion, was
screened at this festival; the movie length is 118 minutes.

Example 2 – Graph of the data model

xsd:dateTime

ex:Film
Festival

rdfs:subClassOf

xsd:string

ex:name

ex:Event

ex:startDate

ex:Film

ex:screenedAt

ex:name

ex:
Documentary

xsd:string

ex:endDate

ex:location

xsd:string

xsd:string

xsd:string
rdfs:subClassOf

ex:directedBy

ex:length

xsd:dateTime
@vocab: "http://example-vocab.com/"

Example 2 – instance data in JSON-LD

{
"@context": "http://example-vocab.com/" ,
"@id": "http://www.demain-lefilm.com/",
"@type": "Documentary",
"name": "Tomorrow",
"directedBy": ["Malani Loren" , "Siril Dion"],
"length": "118min",
"screenedAt": {

"@type": "FilmFestival",
"@id": "http://freezonebelgrade.org/",
"name": "Free Zone" ,
"location": "Belgrade",
"startDate": "2016-11-10T00:01",
"endDate": "2016-11-15T23:59"

}

}

