SPARQL QUERY LANGUAGE

JELENA JOVANOVIC

EMAIL: JELJOV@Q@GMAIL.COM
WEB: HTTP://JELENAJOVANOVIC.NET

- 000000000
SPARQL query language

- W3C standard for querying RDF graphs

- Can be used to query not only native RDF data, but also
any data that can be mapped to RDF
- This mapping could be done by making use of

- (W3C) standard mapping languages such as R2RML that
allow for transforming relational data to RDF

- Various mapping tools such as those listed at:
http://www.w3.org/wiki/ConverterToRdf

Let's start with an example

\\

foaf:nam 7
Ethan Dodds goas . —ethan ——4at-mbox_shalsum

rel:parentOf rdf:type
/ (" foaf:Person \;l

1bca73e5¢6916¢c7c...

foaf:mbox_sha1sum - Bttpeff \ rdf: type f
i www.ldodds.comi# ,Z : ey
Taas B saag rd/f.type T hittpif "'---.\,\
foaf:mbox_sha1sum R \ = .2 _ | usefulinc.com/)
T foaf:knows foaf:weblog . _eddiblog
e -edd |

71b88e951cbwe33g...
foaf:name
Edd Dumbill

/. [foaf:mbox
foaf:dep tlon’ http s l

. www.ldodds.com/ |
.. Idodds-knows.rdf .~

/7 mailtoedd@
xml.com :

dc:title rdf:type p e e

/

Metadata about Leigh

Dodds's relationships

Graphical representation of a small segmentof the RDF graph stored in:
http://www.ldodds.com/ldodds-knows.rdf

Task 1: Find names of all mentioned persons

PREFIX foaf: <http://xmIns.com/foaf/0.1/>

PREFIX rdf. <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?name

FROM <http://www.ldodds.com/ldodds-knows.rdf>

WHERE

{

?x rdf:type foaf:Person.

?x foaf:name ?name.
N
) NN
AN

Triple pattern

Graph pattern

I
The basic structure of a SPARQL query

- PREFIX
- the SPARQL equivalent of declaring an XML namespace

- SELECT

- like its twin in an SQL query, it is used to define the data
items that will be returned by the query

- FROM
- identifies the data against which the query will be run
- can be given in runtime as well

- WHERE
- defines the part of RDF graph we are interested in

- 000000000
Some notes about the SPARQL syntax

- Variables are prefixed with either "? " or "$"

- these two are interchangeable

- Blank nodes are indicated by:
- the label form, such as " :abc", or

- the abbreviated form "[]"
- Dots (.) separate triple patterns

- Semi column (;) separates triple patterns with the
common subject

- 000000000
About graph patterns

- In SPARQL, one cannot SELECT a variable if it is not
listed in the graph pattern (i.e., in the WHERE clause).

- Important:
SPARQL query processor
has NO data dictionary or schema
that lists types and properties of resources

The only schema it has is the graph pattern
(i.e., the WHERE part of the query)

- 0000000
About graph patterns

- Graph pattern is a collection of triple patterns

- It defines the shape of the (RDF) graph we want to
match against

- Within one graph pattern each variable must have the
same value

Task 2: Find names and emails of the persons
whom the author of the document knows

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?name ?email

FROM <nhttp://www.ldodds.com/Idodds-knows.rdf>
WHERE

{
?doc rdf:type foaf:Document ;
foaf:maker ?author .
?author foaf:knows ?someone .
?someone foaf:name ?name ; foaf:mbox ?email .

}

-
Result of the SELECT query (in JSON syntax)

{ Variables from the
"head": { — SELECT clause
"vars": ["name" , "email"]
}os
"results": {
"bindings": [
{
"name": { "type": "literal"” , "value": "Dave Beckett" } ,
"email": { "type": "uri" , "value": "mailto:dave@dajobe.org" }
} o
{
"name": { "type": "literal"” , "value": "Dan Brickley" } ,
"email": { "type": "uri" , "value": "mailto:dan@danbri.org/" }
}os
{
"name": { "type": "literal"” , "value": "Edd Dumbill" } ,
"email": { "type": "uri" , "value": "mailto:edd@xml.com" }
}
]
}
; The result set for the query from the previous example

- 000000
Optional Matching

- RDF often represents semi-structureddata

- this means that two resources of the same type may
have different sets of properties

- For instance,

- a FOAF description of a person may consist only of an
e-mail address;

- alternatively, it can incorporate a real name, twitter
nickname, URL of the photo depicting him/her, etc.

- SPARQL’s mechanism for optional matching
allows for handling this heterogeneity

Task 3: Find names of all persons that the author of the
documentknows, as well as their blogs if they have any

PREFIX foaf. <http://xmlIns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?name ?blog
FROM <nhttp://www.ldodds.com/Idodds-knows.rdf>
WHERE {
?doc rdf:itype foaf:Document; foaf:maker ?author .
?author foaf:knows ?person.
?person foaf:name ?name .
OPTIONAL { ?person foaf:weblog ?blog. }

}

I
The OPTIONAL block

- If a query has multiple optional blocks
- these act independently of one another
- each block may be omitted from, or presentin, a solution.

- Optional blocks can also be nested

- the inner optional block is considered only when the outer optional
block's pattern matches the graph.

Task 4: Find names of all persons that the author of the
documentknows as well as their blogs and emails, if
these are available

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?name ?email ?blog
FROM <nhttp://www.ldodds.com/Idodds-knows.rdf>
WHERE {
?doc rdf:itype foaf:Document; foaf:maker ?author .
?author foaf:knows ?person.
?person foaf:name ?name .
OPTIONAL { ?person foaf:mbox_shalsum ?email. }
OPTIONAL { ?person foaf:weblog ?blog . }

Alternative Matching

- Let’ s suppose that ...
- foaf:knows and rel:hasMet properties are used to represent

somewhat similar information
- we are interested in all persons that the author of the document

either knows or has (ever) met

- In situations like this, you can use
SPARQL's alternative matching feature
to return whichever of the properties is available

Task 5: Find names of all persons that the author of the
documenteither has met or knows

PREFIX foaf: <http://xmiIns.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>
SELECT ?name
FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE {

?doc foaf:maker ?author .

{ ?author foaf:knows ?someone. }

UNION
{?author rel:hasMet 7someone. }
?someone foaf:name ?name .

}

I
UNION

- In contrast with OPTIONAL graph patterns, in the
case of UNION at /east one of the alternatives must

be matched by any query solution;

- |f both branches of the UNION match, two solutions
will be generated.

I
DISTINCT

- In the result set of the previous task some names
appeared twice

- By adding the DISTINCT keyword in the SELECT clause,
we exclude multiple appearance of the same values from
the result set

- Just like in SQL

Task 5a: Find names of all the persons that the author of
the documenteither has met or knows, but without name

repetition

PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>

SELECT DISTINCT ?name
FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE {

?doc foaf:maker ?author .

{ ?author foaf:knows ?someone. }

UNION
{?author rel:hasMet ?someone. }
?someone foaf:name ?name .

}

The ORDER BY clause

- Indicates that the result set should be ordered by the
specified variable

- It can list one or more variable names, indicating the
variables that should be used to order the result set

- By default all sorting is done in the ascending order

- this can be explicitly changed using the DESC
(descending) and ASC (ascending) functions

Task 5b: Find names of all persons that the author of the
documenthas either met or knows; sortthe namesin

descendingorder

PREFIX foaf: <http://xmiIns.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>

SELECT DISTINCT ?name
FROM <http://www.ldodds.com/Idodds-knows.rdf>

WHERE {
?doc foaf:maker ?author .
{ ?authorfoaf:knows ?someone. }
UNION
{?author rel:hasMet ?someone. }
?someone foaf:name ?name .

}
ORDER BY DESC (?name)

I
SPARQL FILTERSs

- SPARQL FILTERSs restrict the solutions of a graph pattern
match according to the given expressions

- Expressions can be of different kinds, but they must
evaluate in a boolean value (true or false)

- The following slides illustrate some of the functions that
can be used for filtering the result set

Task 6: FInd names of all the persons whose
birthday is unknown

PREFIX foaf: <http://xmiIns.com/foaf/0.1/>
PREFIX bio: <http://purl.org/vocab/bio/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
FROM <http://www.ldodds.com/Idodds-knows.rdf>
SELECT ?name
WHERE {
?person rdf:type foaf:Person ; foaf:name ?name..
FILTERNOT EXISTS {
?person bio:event?event.
?eventrdfitype bio:Birth ; bio:date ?birthdate. }

Note: Function NOT EXISTS is introduced in SPARQL 1.1; if the
query does not work, it means you are using an old SPARQL engine

Task 7: Find names of all members of the
Dodds family

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
FROM <http://www.ldodds.com/Idodds-knows.rdf>

WHERE {

}

?person foaf:name ?name
FILTER regex(?name, "dodds", "i")

i

Filtering with regular expressions
Similar to SQL "LIKE"

Alternative:
FILTER strEnds(lcase(?name), “dodds”)

Task 7a: Find names of all the persons who have
Gmail email address

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
SELECT ?name
FROM <http://www.ldodds.com/ldodds-knows.rdf>
WHERE {
?person foaf:name ?name ; foaf:mbox ?mbox
FILTER regex(str(?mbox), "@gmail\\.com$”)

}

To learn more about the regular expression language check
this tutorial: http://regex.bastardsbook.com/

Task 8: Get all reviews with rating above 6 that were
created by a person named Jim
(filtering based on elements values)

PREFIX foaf: <http://xmins.com/foaf/0.1/>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX rev: <http://www.purl.org/stuff/rev#>

SELECT ?review
FROM <http://www.cs.umd.edu/~hendler/2003/foaf.rdf>
WHERE {
?someone rdf:type foaf:Person;
foaf:name ?name FILTER regex(?name, "Jim", "i").

SPARQL
type casting

?someone foaf:made ?review .
?review rev:rating ?rating

FILTER (xsd:int(?rating) >=6) .

e
Grouping and aggregating data

- GROUP BY allows for grouping the items in the result set
based on one or more variables and/or expressions

- Having grouped the results, we can apply various
functions at the group level: SUM, COUNT, AVG, MIN,
MAX and the like

- We can also use HAVING clause to select/ filter the query
results at the group level

- it is analogous to a FILTER expression, but operates over
groups, rather than individual solutions

Task 9: Find manufacturers who produce more than 10
different products and display the number of different
products they produce

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX schema: <http://schema.org/>

SELECT ?manufacturer (COUNT(?product) AS ?count)
WHERE {

?product rdf:type schema:Product;

dbo:manufacturer ?manufacturer.

}
GROUP BY ?”manufacturer
HAVING (COUNT (?product) > 10)
ORDER BY 7?count

-
Other kinds of SPARQL queries

Besidesthe SELECT queries,

SPARQL supports three other query types:
- ASK
- DESCRIBE
- CONSTRUCT

-
ASK query

- Aimed at testing whether a query pattern has a solution

- No information is returned about the possible query
solutions, just whether a solution exists

- An example: have Natalie Portman and Scarlett Johansson
ever played in the same movie?

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
ASK {
?movie
dbo:starring dbr:Natalie_Portman;
dbo:starring dbr:Scarlett_Johansson.

e
ASK query

Results of an ASK query:
- Possible values: true/false
- JSON format of the results:

{
"head": {},

"boolean": true

}

I
DESCRIBE query

- Returns a graph comprising all the available triplets
about the resource matched in the graph pattern (that is,
in the WHERE part of the query)

- Example:

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
DESCRIBE ”movie
WHERE {
?movie dbo:starring dbr:Natalie_Portman ;
dbo:starring dbr:Scarlett_Johansson .

}

The query returns a graph comprising all the available triplets about the
movie(s) starred by both actresses

- 000000000
CONSTRUCT query

- It is used for creating a new RDF graph from an
existing one

- It is for RDF graph
somewhat the same as XSLT for XML data

Task 10: Map the data about musicians’date and place
of birth from DBpediato Schema.org vocabulary

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX schema: <

http://schema.org/> _
CONSTRUCT { a/ abbreviated form for rdf:type
?someone a‘schema:Person;

schema:birthPlace ?birthplace ;
schema:birthDate ?birthdate ;
schema:jobTitle "Musician”.

} WHERE {
?someone a dbo:MusicalArtist;
dbo:birthDate ?birthdate ;
dbo:birthPlace ?birthplace .

Task 11: Establish aunt relationship

PREFIX schema: <http://schema.org/>
PREFIX rel: <http://purl.org/vocab/relationship/>
CONSTRUCT {
?child rel:hasAunt ?aunt.
} WHERE {
?child schema:parent ?parent.
?parent schema:parent ?grandparent.
?aunt schema:parent ?grandparent;
schema:gender ?gender
FILTER (?parent!= ?aunt && regex(?gender, “female”, “i")) .

Queries over multiple distributed data sources

- All the queries we’ve seen so far were executed over
data originating from one data source (one RDF graph)

- However, queries can be executed over multiple data
sources

- In that case, we talk about federated queries

- SPARQL 1.1 introduces the SERVICE keyword for defining
additional data sources

Task 12: Find all the acquaintances of Leigh Dodds who
have the same surname as well known scientists

PREFIX foaf: <http://xmiIns.com/foaf/0.1/>
PREFIX db: <http://dbpedia.org/ontology/>
SELECT ?person
FROM <http://www.ldodds.com/Idodds-knows.rdf>
WHERE {
<http://www.ldodds.com#me> foaf:knows ?person .
?person foaf:surname ?surname..
SERVICE <nhttp://dbpedia.org/spargl>{
?someone a db:Scientist;
foaf:surname ?surname.

Unique identifier (IRI) for Leigh Dodds as given in the used data source (see FROM)

- 000000000
Learn SPARQL through examples

- Search RDF data with SPARQL
- https://www.ibm.com/developerworks/library/j-sparql/

- SPARQL by Example
- http://www.cambridgesemantics.com/semantic-university/sparqgl-by-example

- A detailed SPARQL tutorial
- http://lwww.w3.0rg/2004/Talks/17Dec-sparql/

- Bring existing data to the Semantic Web
- http://www.ibm.com/developerworks/library/x-semweb/

- 000000000
Learn SPARQL through examples

- RDF as self-describing data
- http://goo.gl/Gdr5LG

- SPARQL at the movies
- http://www.snee.com/bobdc.blog/2008/11/sparql-at-the-movies.html

- Bart (Simpson) blackboard queries
- http://goo.gl/aM9mcd ; http://goo.gl/z9qOIH

- Example SPARQL queries over 10+ different RDF datasets
- http://openuplabs.tso.co.uk/datasets

- SPARQL queries over Europeana repository
- http://labs.europeana.eu/api/linked-open-data-spargl-endpoint

e
Some handy tools for learning SPARQL

- Flint SPARQL Editor

- http://openuplabs.tso.co.uk/demos/sparqgleditor

- YASGUI - Yet Another SPARQL GUI

- http://yvasqgui.laurensrietveld.nl/

- SPARQLer - an online SPARQL query tool
- http://www.sparqgl.org/sparqgl.html

- ARQ, a SPARQL processor for Jena framework
- http://jena.sourceforge.net/ ARQ/

