

Text mining methods: Topic modelling & Graph-based keywords extraction

Jelena Jovanović

Email: jeljov@gmail.com

Web: <http://jelenajovanovic.net>

OVERVIEW

- Topic modelling methods
 - LDA
- Graph-based methods
 - KeyGraph
 - TextRank

TOPIC MODELLING

TOPIC MODELLING METHODS

Topic modeling methods are statistical methods that analyze the words of the given collection of documents to

- discover the underlying themes,
- how those themes are connected to each other, and
- how they change over time

LATENT DIRICHLET ALLOCATION (LDA)

Latent Dirichlet allocation (LDA) is cited as the simplest topic modelling method

LDA assumptions:

- Topic is a *distribution over a fixed vocabulary*
- There is a fix set of topics for a collection of documents
- Each document in a collection has its own distribution over the given (fixed) set of topics
 - as a consequence, each document exhibits multiple topics

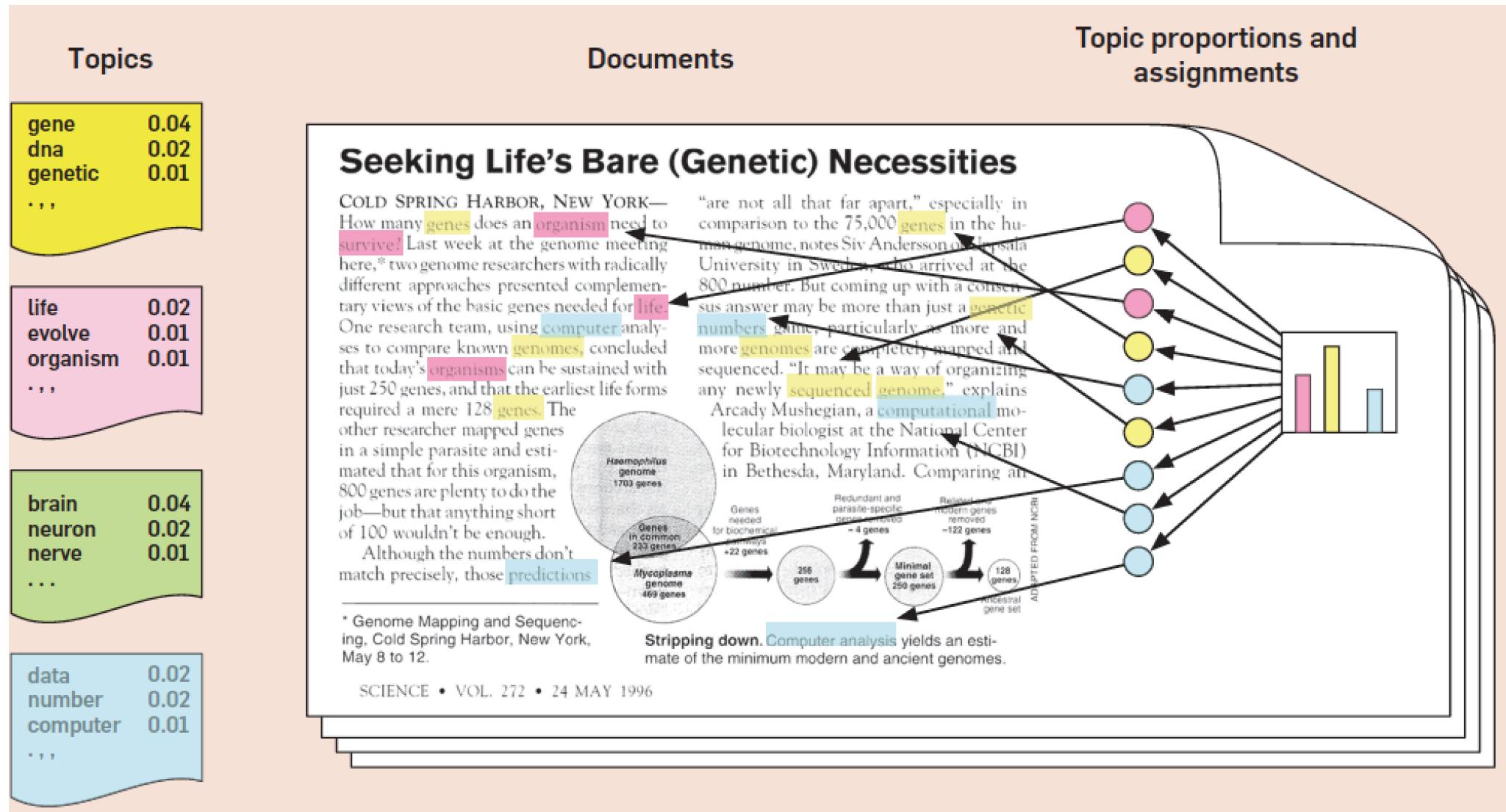
LDA's GENERATIVE PROCESS

First, specify a set of topics for the given documents collection

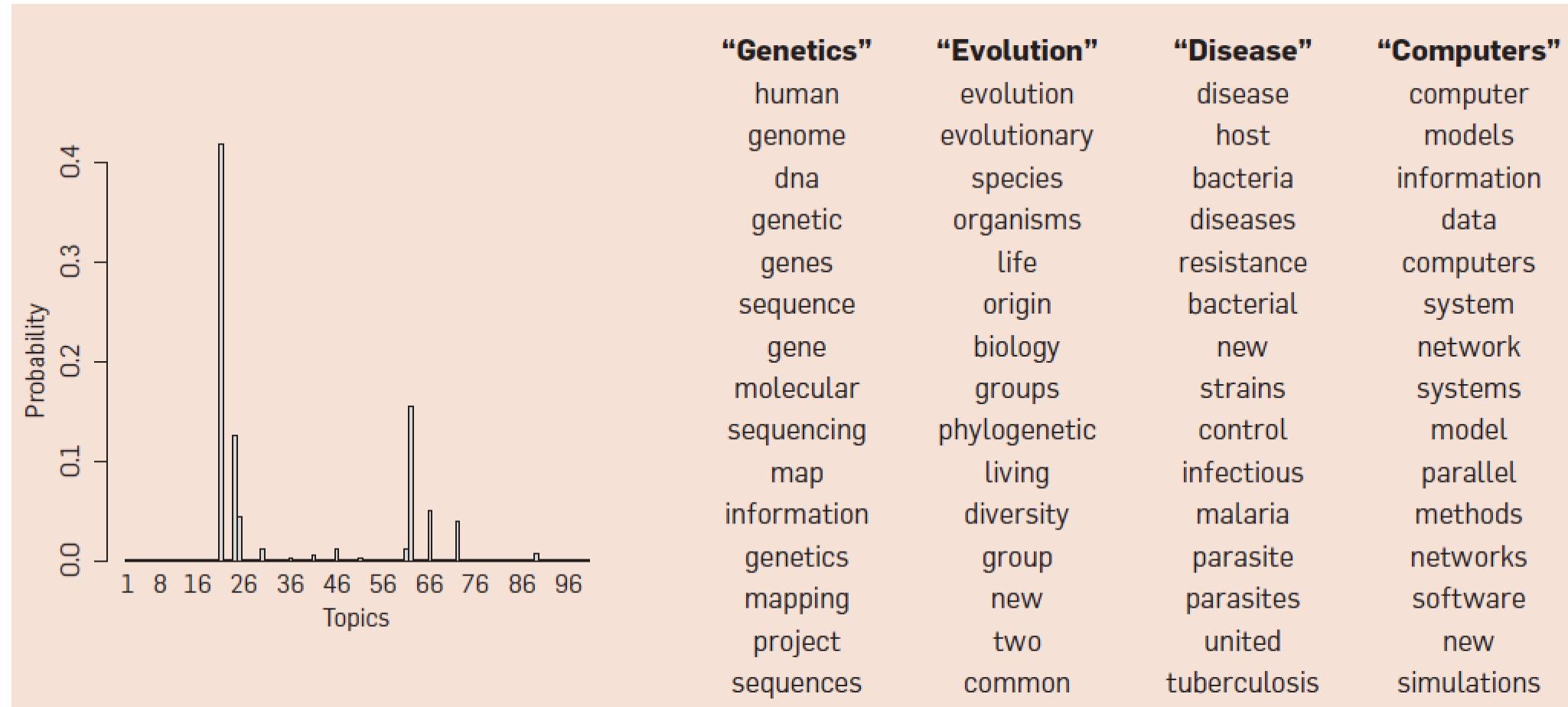
Then, for each document in the collection, we generate words in a two-stage process:

- 1) Randomly choose a distribution over topics
- 2) For each word (to be created) in the document
 - a) Randomly choose a topic from the distribution over topics in step #1
 - b) Randomly choose a word from the selected topic, that is, the corresponding distribution over the vocabulary

LDA's GENERATIVE PROCESS



LDA RESULTS



Real results for the previous example article, obtained by fitting a 100-topic LDA model over 17,000 articles from the Science journal

LDA – THE NAME ORIGIN

- **Dirichlet** comes from the name of the distribution (Dirichlet dist.) that is used to draw the per-document topic distribution
- **Latent** comes from the fact that topics (their distribution and structure) are *hidden, unobservable*, and have to be inferred / mined from the observable items (words)

INTERPRETATION OF LDA INFERRRED TOPICS

- Topics inferred by LDA are not always easily interpretable by humans
- Several attempts at facilitating the task of topic interpretation
- Examples:
 - Interactive visualization of LDA results (topics, terms) and documents, such as [this Wikipedia browser](#)
 - Using alternative measures for ranking terms within a topic, e.g.
 - ▷ *Lift* - the ratio of a term's probability within a topic to its marginal probability across the corpus
 - ▷ *Pointwise Mutual Information (PMI)* – combines frequency ranking and ranking based on co-occurrence of the frequent terms

INTERPRETATION OF LDA INFERRED TOPICS

- LDAVis:

- URL: <https://github.com/cpsievert/LDAvis>
- Combines interactive visualization and alternative ways of term ranking
- Introduces the measure of term *relevance*:

$$r(w, k | \lambda) = \lambda * \log(\phi_{kw}) + (1 - \lambda) * \log\left(\frac{\phi_{kw}}{p_w}\right)$$

ϕ_{kw} - probability of the term w in the topic k

p_w - probability of the term w in the overall corpus (marginal prob.)

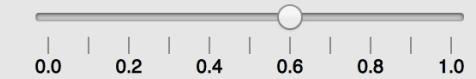
λ - the parameter (0-1); the authors' study found 0.6 to be the best value

LDAVIS EXAMPLE

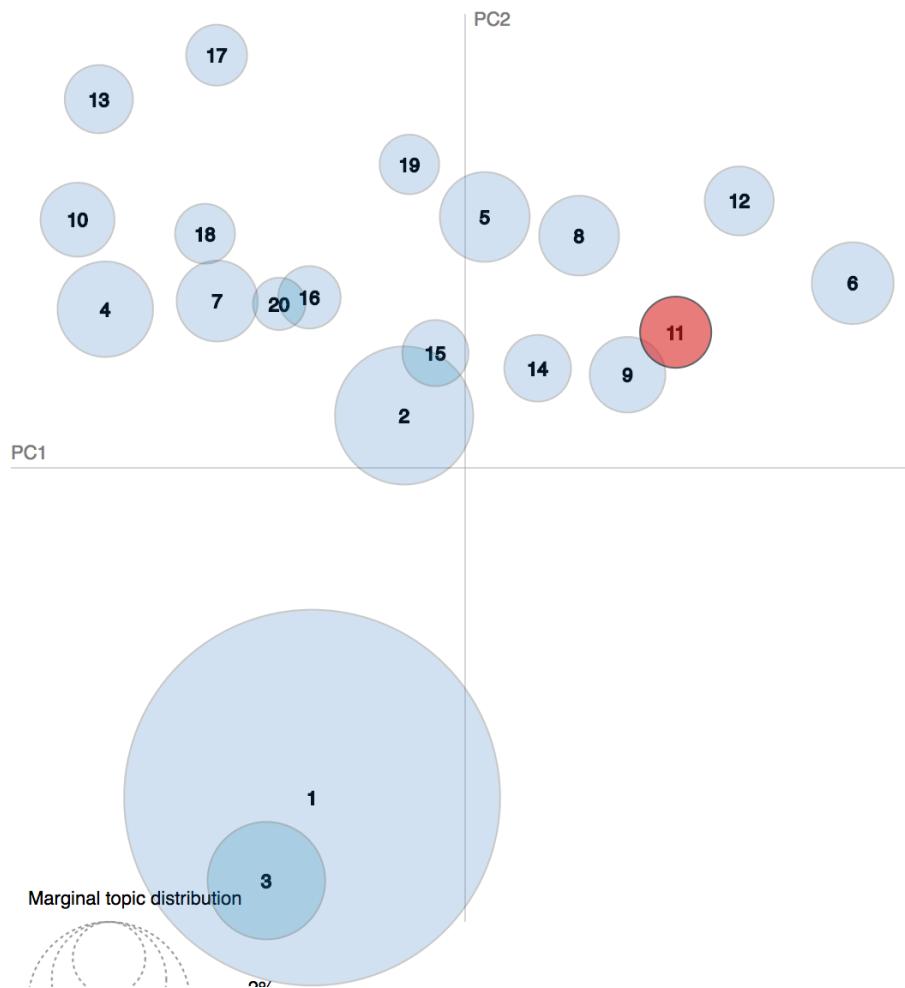
Selected Topic: 11

Slide to adjust relevance metric:⁽²⁾

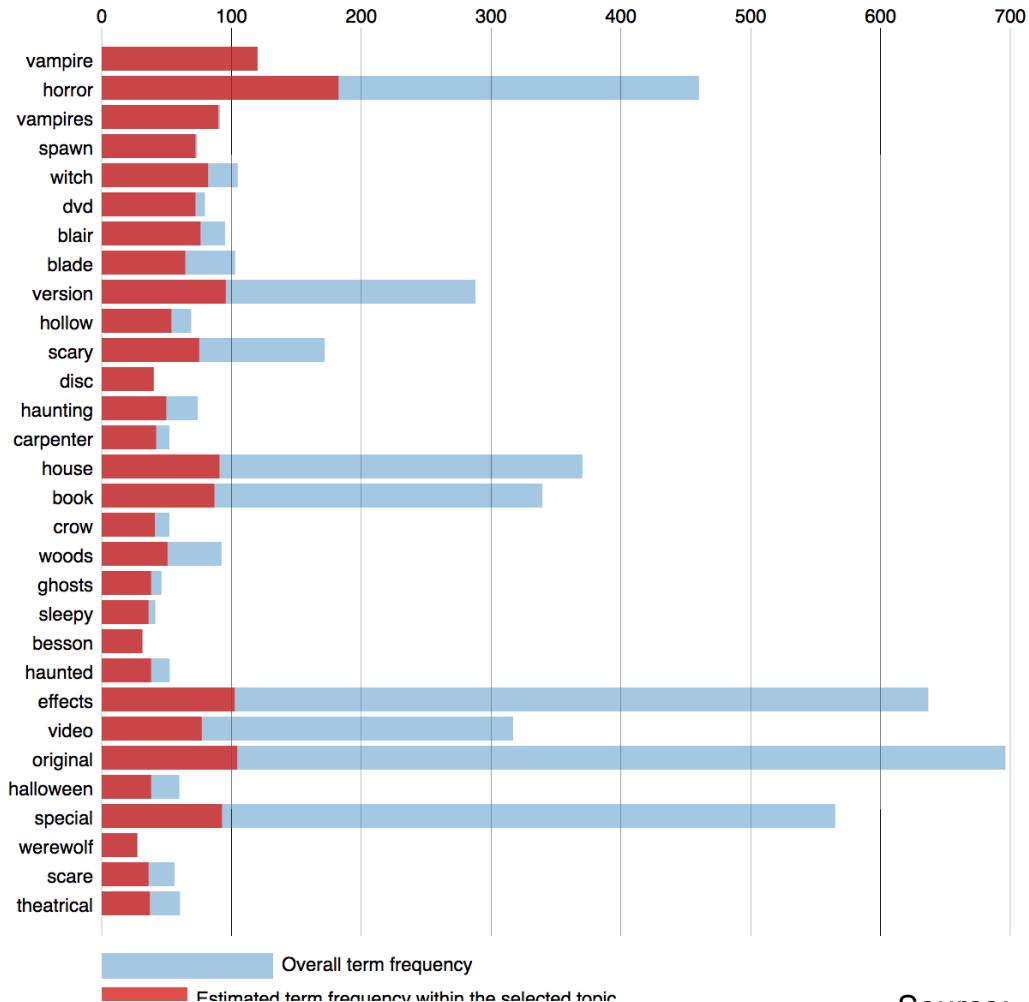
$\lambda = 0.6$



Intertopic Distance Map (via multidimensional scaling)



Top-30 Most Relevant Terms for Topic 11 (1.9% of tokens)



Check this short talk on LDAVis:
<https://speakerdeck.com/bmabey/visualizing-topic-models>

Source:
<http://cpsievert.github.io/LDAvis/reviews/vis/>

LDA ASSUMPTIONS (RESTRICTIONS)

The assumptions that LDA makes:

- bag of words assumption: the order of words in a document does not matter
- the order of documents (in the corpus) does not matter
- the number of topics is assumed to be known and is fixed
- topics are mutually unrelated

Other, more complex topic modelling methods relax these assumptions

TOPIC MODELS BEYOND LDA

- *Dynamic topic model* respects the ordering of the documents in a collection
- *Correlated topic model* allows the occurrence of topics to exhibit correlation
- *Spherical topic model* allows words to be unlikely in a topic
- *Structural topic model* includes document metadata as covariates that might affect
 - topical prevalence - how much a document is associated with a topic
 - topical content – the words used within a topic

SOFTWARE LIBRARIES FOR TOPIC MODELLING

- A variety of options in R:
 - lda: <https://cran.r-project.org/package=lda>
 - topicmodels: <https://cran.r-project.org/package=topicmodels>
 - stm: <http://www.structuraltopicmodel.com/>
- Also, several Python libraries:
 - Gensim: <https://radimrehurek.com/gensim/>
 - lda: <http://pythonhosted.org//lda/>
- In Java:
 - MALLET Topic Modelling lib: <http://mallet.cs.umass.edu/topics.php>

GRAPH-BASED METHODS: KEYGRAPH

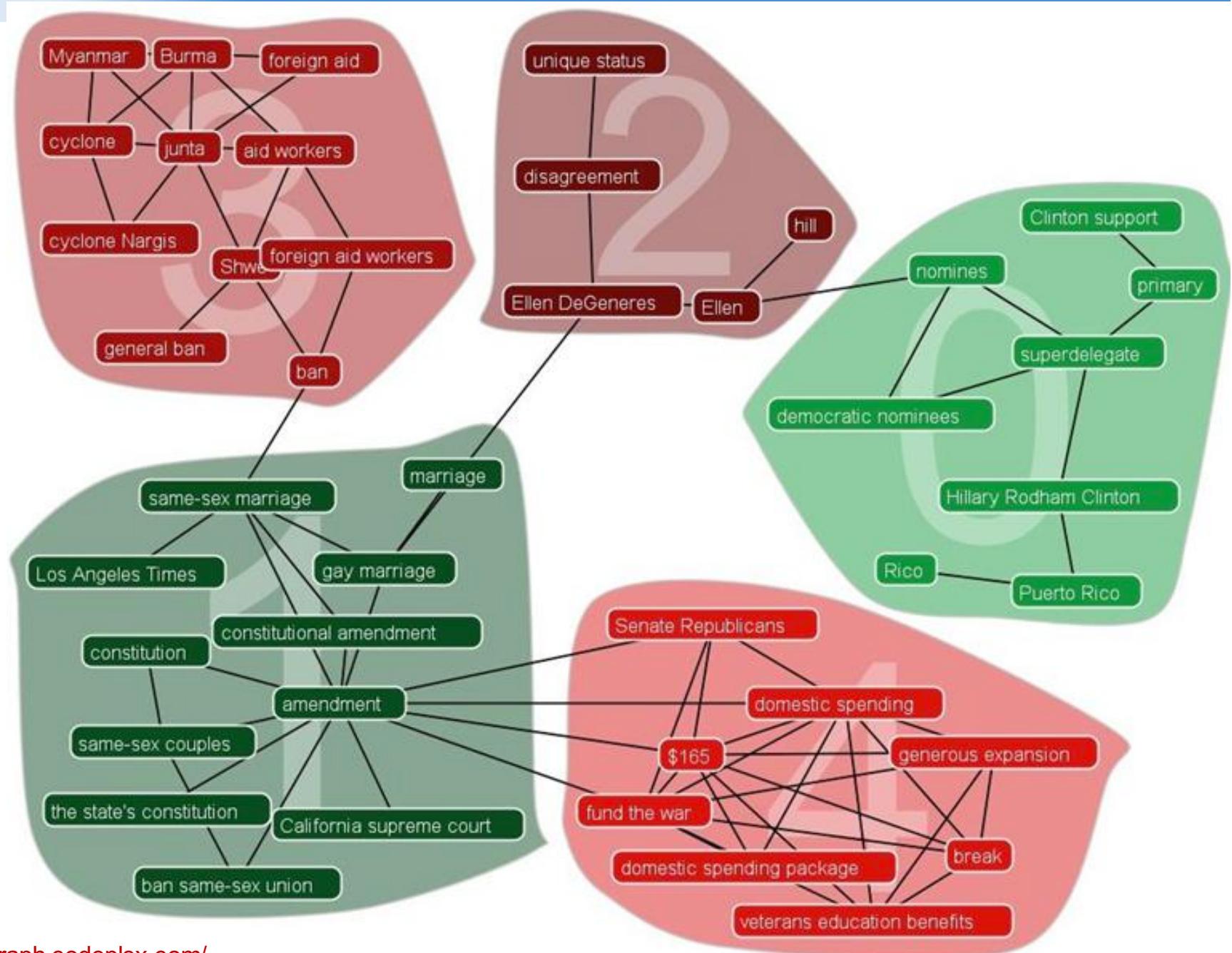
KEYGRAPH IN A NUTSHELL

- Represents a collection of documents as a keyword co-occurrence graph
- Uses an off-the shelf community detection algorithm to group highly co-occurring keywords into “communities” (clusters)
- The detected communities prove to be good proxies for document topics

KEYGRAPH: THE INTUITION

- Keywords co-occur when there is a meaningful topical relationship between them
- Making an analogy to real-world social networks - where people connect if they share a common ‘topic’ (interest, activity, affiliation, etc.) - KeyGraph is modelled as a social network of keywords

ILLUSTRATION OF KEYGRAPH RESULT



KEYGRAPH ALGORITHM

- 1) Build a keywords co-occurrence graph for the given document collection
- 2) Community detection and extraction of topic features
- 3) Assigning topics to documents (based on the detected topic features)
- 4) Merging topics with significant document overlap

KEYGRAPH ALGORITHM: STEP 1

- Create the initial keywords co-occurrence graph
 - nodes are keywords (nouns, noun phrases, named entities) extracted from the corpus
 - an edge is established between two nodes if the corresponding keywords co-occur in at least one document;
 - edges are weighted by the count of the co-occurrences
- The initial graph is filtered based on
 - the document frequency (df) of individual keywords
 - the probability of co-occurrence of each pair of keywords

$$p(k_i|k_j) = \frac{df_{i\cap j}}{df_j} \quad ; \quad p(k_j|k_i) = \frac{df_{i\cap j}}{df_i}$$

KEYGRAPH ALGORITHM: STEP 2

- Community detection
 - relies on an off-the shelf algorithm for community detection (relational clustering) based on the *edge betweenness centrality (Bc)* metric
 - Bc for an edge is defined as the count of the shortest paths, for all pairs of nodes in the network, that pass through that edge
 - in an iterative process, all edges with high Bc are removed, thus cutting all inter-community connections and splitting the graph into several components, each corresponding to one (topical) community
- Extraction of topic features
 - the highly co-occurring keywords in each component of the KeyGraph form the features for the corresponding topic

KEYGRAPH ALGORITHM: STEP 3

- Each community of keywords forms a *feature document* f_t , for the corresponding topic t
- The likelihood of the topic t for a document d is determined as the cosine similarity of d and the feature document f_t :

$$p(t|d) = \frac{\text{cosine}(d, f_t)}{\sum_{t \in T} \text{cosine}(d, f_t)}$$

- Each document can be associated with multiple topics (each with a different likelihood)

KEYGRAPH ALGORITHM: STEP 4

- If case multiple documents are assigned to a pair of topics, it is assumed that those two topics are sub-topics of the same parent topic, and they are merged
- The allowed level of overlap between any two topics is controlled by a parameter (threshold)

ADVANTAGES OF THE KEYGRAPH METHOD

- Comparable performance (precision, recall, F1) to state of the art topic modelling methods
- Capable of filtering noisy irrelevant (social media) posts, thus creating smaller clusters of relevant documents for each topic
- Its running time is linear in the size of the document collection
 - it significantly outruns LDA method on large datasets (>50,000 documents)
- It is robust with respect to the parameters, that is, its performance does not vary much with the change in parameter values

FIND MORE ABOUT KEYGRAPH

- Implementation in Java and further information available at:
<https://keygraph.codeplex.com/>

GRAPH-BASED METHODS: TEXTRANK

Mihalcea, R. & Tarau, P. (2004). TextRank: Bringing order into texts. In D. Lin & D. Wu (Eds.), Proc. of Empirical Methods in Natural Language Processing (EMNLP) 2004 (pp. 404–411), Barcelona, Spain, July. Association for Computational Linguistics.

GRAPH-BASED RANKING METHODS

- TextRank is a *graph-based ranking method*
- The basic idea behind such methods is that of ‘voting’ or ‘recommendation’:
 - when node A links to the node B, it is basically casting a vote for B
 - the higher the number of votes a node receives, the higher is its importance (in the graph)
 - the importance of the node casting the vote (A) determines how important the vote itself is

TEXTRANK METHOD

- It is based on the Google's original PageRank model for computing a node's importance score:

$$S(N_i) = (1 - d) + d * \sum_{j \in In(N_i)} \frac{1}{|Out(N_j)|} S(N_j)$$

$S(N_i)$ – score for node i

$Out(N_i)$ – the set of nodes that node N_i points to

$In(N_i)$ – the set of nodes that point to N_i

d – the prob. of going from N_i to one of $Out(N_i)$ nodes; $1-d$ is the prob. of jumping to a random node in the graph (the random surfer model)

TEXTRANK METHOD

- Starting from arbitrary values assigned to each node, the computation iterates until convergence is achieved
 - that is, until $|S^{k+1}(N_i) - S^k(N_i)| < \mu$
- After running the algorithm, the score associated with each node represents the node's “importance” within the graph

TEXTRANK FOR WEIGHTED GRAPHS

- In case of weighted graphs, where weights represent the strength of the connection between node pairs, weighted node score is:

$$WS(N_i) = (1 - d) + d * \sum_{j \in In(N_i)} \frac{w_{ji}}{\sum_{N_k \in Out(N_j)} w_{kj}} WS(N_j)$$

$WS(N_i)$ – weighted score for node i

w_{ij} – weight (strength) of the connection between nodes i and j

TEXTRANK FOR KEYWORDS EXTRACTION

- The input text is pre-processed
 - tokenization and part-of-speech tagging
- Co-occurrence (undirected) graph is created
 - a node is created for each unique noun and adjective of the input text
 - an edge is added between nodes (i.e. words) that co-occur within a window of N words ($N \in \{2,10\}\right)^*$
- The ranking algorithm is run
 - initial score for all the nodes is set to 1
 - the algorithm is run until the conversion (typically 20-30 iterations) at the chosen threshold (e.g. $\mu = 10^{-4}$)

TEXTRANK FOR KEYWORDS EXTRACTION (CONT.)

- Nodes are sorted based on their final score, and top T (or $T\%$ of) words are taken as potential keywords
- Post-processing: potential keywords are matched against the input text, and sequences of adjacent keywords are collapsed into multi-word keywords
 - E.g. in the text “Matlab code for plotting functions”, if both *Matlab* and *code* are among the potential keywords, they would be collapsed into *Matlab code*

TEXTRANK FOR TEXT SUMMARIZATION

TextRank method can be also used for extracting relevant sentences from the input text, thus, effectively enabling automated text summarization

In this application case:

- nodes of the graph are whole sentences
- edges are established based on the sentence *similarity*

TEXTRANK FOR TEXT SUMMARIZATION (CONT.)

- The intuition:
 - the similarity relation between two sentences can be seen as a act of “recommendation”: a sentence recommends other sentences that address similar concepts
 - the sentences that are highly recommended by other sentences in the text are likely to be more informative for the given text

TEXTRANK FOR TEXT SUMMARIZATION (CONT.)

- Sentence similarity can be measured in many different ways
 - E.g., cosine similarity, longest common subsequence, various string metrics
- The authors' original proposal is based on the content (word) overlap of two sentences S_i and S_j :

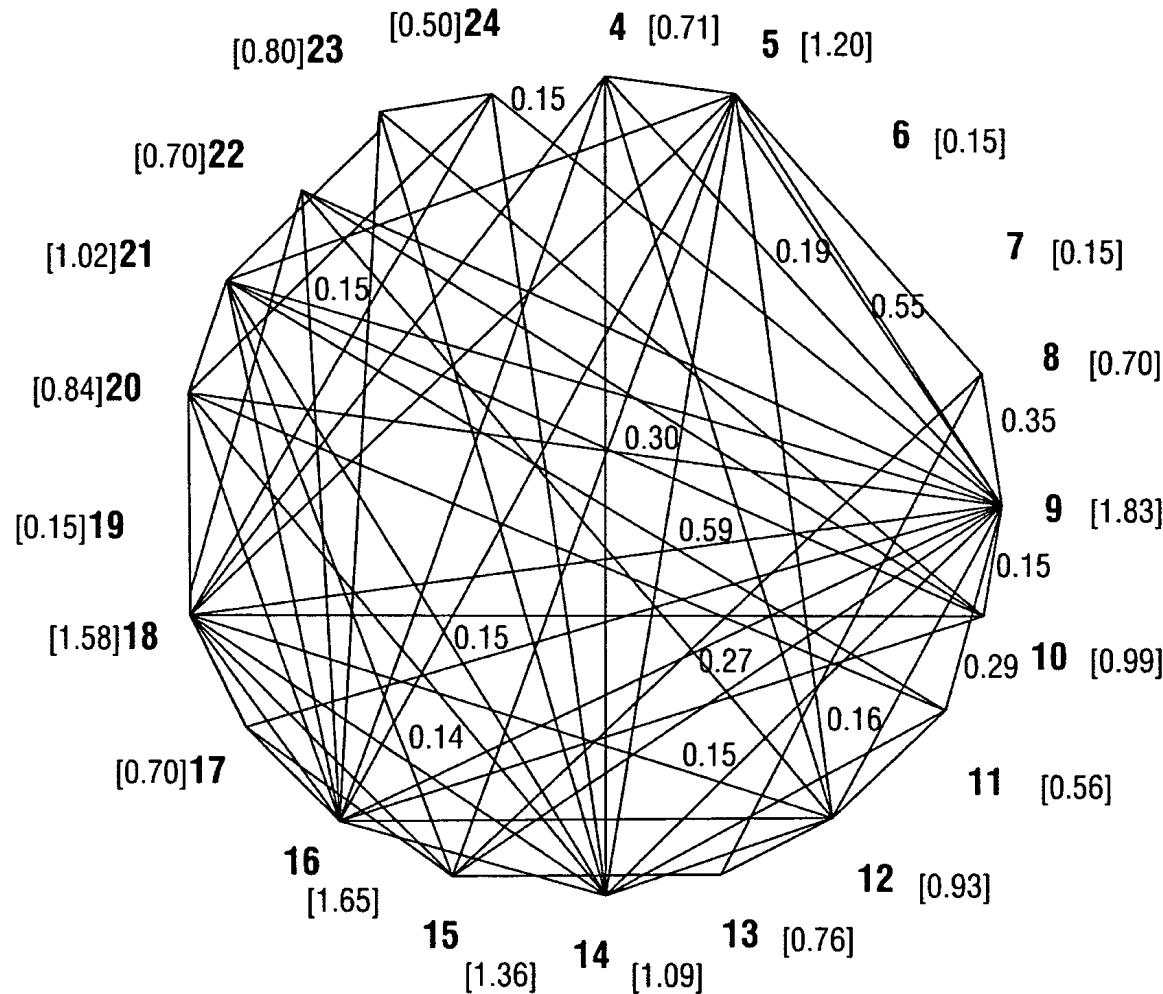
$$\text{Similarity}(S_i, S_j) = \frac{|\{w_k | w_k \in S_i \ \& \ w_k \in S_j\}|}{\log(|S_i|) + \log(|S_j|)}$$

The similarity measure uses the length of the sentences as the normalization factor to avoid promotion of long sentences

TEXTRANK FOR TEXT SUMMARIZATION (CONT.)

- The resulting graph is weighted and highly connected
 - edge weights correspond to the computed similarities of the text sentences
 - graph density can be reduced by setting the minimum similarity value for establishing a connection
- The (weighted) ranking algorithm is run on the graph
- Sentences are sorted based on their score
- The top ranked sentences are selected for the summary

EXAMPLE WEIGHTED SENTENCE GRAPH



IMPLEMENTATION OF TEXTRANK

- TextRank method is patented:
<https://www.google.com/patents/US7809548>
- No ‘official’ implementation, but several implementations in different programming languages (Java, Python, R,...)
 - Easy to find by googling it