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» Graph-based methods
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— TextRank



TOPIC MODELLING



TOPIC MODELLING METHODS

Topic modeling methods are statistical methods that
analyze the words of the given collection of documents to
» discover the underlying themes,

* how those themes are connected to each other, and

= how they change over time



LATENT DIRICHLET ALLOCATION (LDA)

Latent Dirichlet allocation (LDA) is cited as the simplest
topic modelling method

LDA assumptions:
» Topic is a distribution over a fixed vocabulary

* There is a fix set of topics for a collection of documents

» Each document in a collection has its own distribution over the
given (fixed) set of topics
— as a consequence, each document exhibits multiple topics



LDA’'S GENERATIVE PROCESS
—

First, specify a set of topics for the given documents collection

Then, for each document in the collection, we generate words
In a two-stage process:

1) Randomly choose a distribution over topics

2) For each word (to be created) in the document

a) Randomly choose a topic from the distribution over topics in
step #1

b) Randomly choose a word from the selected topic, that is, the
corresponding distribution over the vocabulary



LDA’'S GENERATIVE PROCESS
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LDA RESULTS
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Real results for the previous example article, obtained by fitting a 100-topic LDA
model over 17,000 articles from the Science journal
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LDA — THE NAME ORIGIN

* Dirichlet comes from the name of the distribution (Dirichlet
dist.) that is used to draw the per-document topic distribution

» Latent comes from the fact that topics (their distribution and
structure) are hidden, unobservable, and have to be inferred /
mined from the observable items (words)



INTERPRETATION OF LDA INFERRED TOPICS

.
= Topics inferred by LDA are not always easily interpretable by
humans

= Several attempts at facilitating the task of topic interpretation

= Examples:

— Interactive visualization of LDA results (topics, terms) and documents,
such as this Wikipedia browser

— Using alternative measures for ranking terms within a topic, e.g.

> Lift - the ratio of a term’s probability within a topic to its marginal
probability across the corpus

~ Pointwise Mutual Information (PMI) — combines frequency ranking and
ranking based on co-occurrence of the frequent terms
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INTERPRETATION OF LDA INFERRED TOPICS
:.
= | DAVis:
— URL: https://github.com/cpsievert/LDAvis

— Combines interactive visualization and alternative ways of term
ranking

— Introduces the measure of term relevance:

r(w,klA) = A 10g(dpo) + (1= 2) * log (";ﬂ)

drw - probability of the term win the topic k
pw - probability of the term win the overall corpus (marginal prob.)

A - the parameter (0-1); the authors’ study found 0.6 to be the best value

Sievert, C. & Shirley, K. (2014). LDAvis: Amethod for visualizing andinterpreting topics. Proc. ofthe Workshop on Interactive Language
Learning, Visualization, and Interfaces. URL: hitp:/nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf




LDAVIS EXAMPLE
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Marginal topic distrib

Source:
http://cpsievert.github.io/LDAvis/reviews/vis/

Check this short talk on LDAVis:
https://speakerdeck.com/bmabey/visualizing-topic-models




LDA ASSUMPTIONS (RESTRICTIONS)

The assumptions that LDA makes:

» bag of words assumption: the order of words in a document
does not matter

» the order of documents (in the corpus) does not matter
= the number of topics is assumed to be known and is fixed

= topics are mutually unrelated

Other, more complex topic modelling methods relax these
assumptions
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TOPIC MODELS BEYOND LDA

.|
» Dynamic topic model respects the ordering of the documents in a
collection

= Correlated topic model allows the occurrence of topics to exhibit
correlation

» Spherical topic model allows words to be unlikely in a topic

» Structural topic model includes document metadata as covariates
that might affect

— topical prevalence - how much a document is associated with a topic
— topical content — the words used within a topic
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SOFTWARE LIBRARIES FOR TOPIC MODELLING

» A variety of options in R:

— |da: https://cran.r-project.org/package=Ilda

— topicmodels: https://cran.r-project.org/package=topicmodels

— stm: http://www.structuraltopicmodel.com/

= Also, several Python libraries:
— Gensim; https://radimrehurek.com/gensim/
— Ida: http://pythonhosted.org//Ida/

* |n Java:
— MALLET Topic Modelling lib: http://mallet.cs.umass.edu/topics.php
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GRAPH-BASED METHODS:
KEYGRAPH
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H. Sayyadi, L. Raschid. "A Graph Analytical Approach for Topic Detection", ACM Transactions on Internet Technology (TOIT), 2013



KEYGRAPH IN A NUTSHELL
L ——

» Represents a collection of documents as a keyword co-
occurrence graph

» Uses an off-the shelf community detection algorithm to
group highly co-occurring keywords into “communities”
(clusters)

* The detected communities prove to be good proxies for
document topics
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KEYGRAPH: THE INTUITION
 —

» Keywords co-occur when there is a meaningful topical
relationship between them

* Making an analogy to real-world social networks - where people
connect if they share a common ‘topic’ (interest, activity,
affiliation, etc.) - KeyGraph is modelled as a social network of
keywords
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ILLUSTRATION OF KEYf

Source: http://keygraph.codeplex.com/




KEYGRAPH ALGORITHM

1)

2)

4)

Build a keywords co-occurrence graph for the given document
collection

Community detection and extraction of topic features

Assigning topics to documents (based on the detected topic
features)

Merging topics with significant document overlap
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KEYGRAPH ALGORITHM: STEP 1

.
» Create the initial keywords co-occurrence graph

— nodes are keywords (nouns, noun phrases, named entities) extracted
from the corpus

— an edge is established between two nodes if the corresponding
keywords co-occurin at least one document;

— edges are weighted by the count of the co-occurrences

* The initial graph is filtered based on

— the document frequency (df) of individual keywords
— the probability of co-occurrence of each pair of keywords

dfinj _ dfinj
af, p(kjlki) = 7

p(kilk;) =
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KEYGRAPH ALGORITHM: STEP 2

.|
= Community detection

— relies on an off-the shelf algorithm for community detection (relational
clustering) based on the edge betweenness centrality (Bc) metric

— Bcfor an edge is defined as the count of the shortest paths, for all
pairs of nodes in the network, that pass through that edge

— In an iterative process, all edges with high Bc are removed, thus
cutting all inter-community connections and splitting the graph into
several components, each corresponding to one (topical) community

= Extraction of topic features

— the highly co-occurring keywords in each component of the KeyGraph
form the features for the corresponding topic

22



KEYGRAPH ALGORITHM: STEP 3
—

» Each community of keywords forms a feature document f,, for
the corresponding topic t

» The likelihood of the topic t for a document d is determined
as the cosine similarity of d and the feature document ft:

cosine(d, f;)
>.rer cosine(d, fi)

p(tld) =

» Each document can be associated with multiple topics (each
with a different likelihood)

23



KEYGRAPH ALGORITHM: STEP 4

» [f case multiple documents are assigned to a pair of topics, it is
assumed that those two topics are sub-topics of the same parent
topic, and they are merged

* The allowed level of overlap between any two topics is controlled
by a parameter (threshold)

24



ADVANTAGES OF THE KEYGRAPH METHOD

= Comparable performance (precision, recall, F1) to state of the art
topic modelling methods

» Capable of filtering noisy irrelevant (social media) posts, thus
creating smaller clusters of relevant documents for each topic

= |[ts running time is linear in the size of the document collection

— it significantly outruns LDA method on large datasets (>50,000
documents)

= |t is robust with respect to the parameters, that is, its performance
does not vary much with the change in parameter values
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FIND MORE ABOUT KEY

* Implementation in Java and further information available at:
https://keygraph.codeplex.com/
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GRAPH-BASED METHODS:
TEXTRANK

Mihalcea, R. & Tarau, P. (2004). TextRank: Bringing order into texts. In D. Lin & D. Wu (Eds.), Proc. of Empirical Methods in Natural
Language Processing (EMNLP) 2004 (pp. 404—411), Barcelona, Spain, July. Association for Computational Linguistics.



GRAPH-BASED RANKING METHODS

» TextRank is a graph-based ranking method

* The basic idea behind such methods is that of ‘voting’ or
‘recommendation’:
— when node A links to the node B, it is basically casting a vote for B

— the higher the number of votes a node receives, the higher is its
importance (in the graph)

— the importance of the node casting the vote (A) determines how
important the vote itself is
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TEXTRANK METHOD

= [t is based on the Google’s original PageRank model for
computing a node’s importance score:

S(N)) = (1 —d) +d z S(V;)

bty 10ut (V)]

S(N;) — score for node i
Out(N,) — the set of nodes that node N; points to
In(N;) — the set of nodes that point to N;

d — the prob. of going from N; to one of Out(N;) nodes; 1-d is the prob. of
jumping to a random node in the graph (the random surfer model)
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TEXTRANK METHOD

» Starting from arbitrary values assigned to each node, the
computation iterates until convergence is achieved

— thatis, until |S**1(N;) — S*(N)| < u

= After running the algorithm, the score associated with each node
represents the node’s “importance” within the graph

30



TEXTRANK FOR WEIGHTED GRAPHS

* [n case of weighted graphs, where weights represent the strength
of the connection between node pairs, weighted node score is:

W..
WS(N) = (1—d) +d * Z ji WS
jem;) < Ne€Out(Nj) Wk j

WS(N,) — weighted score for node i
w; — weight (strength) of the connection between nodes jand j
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TEXTRANK FOR KEYWORDS EXTRACTION

* The input text is pre-processed

— tokenization and part-of-speechtagging

» Co-occurrence (undirected) graph is created
— a node is created for each unique noun and adjective of the input text

— an edge is added between nodes (i.e. words) that co-occur within a
window of Nwords (N € {2,10})"

* The ranking algorithm is run
— initial score for all the nodes is set to 1

— the algorithm is run until the conversion (typically 20-30 iterations) at
the chosen threshold (e.g. u = 107%)

32
*The authors’ experiments showed that the larger the window, the lower the precision; N=2 proved the best.



TEXTRANK FOR KEYWORDS EXTRACTION (CONT.)

* Nodes are sorted based on their final score, and top T (or T% of)
words are taken as potential keywords

» Post-processing: potential keywords are matched against the
input text, and sequences of adjacent keywords are collapsed
Into multi-word keywords

— E.g. in the text “Matlab code for plotting functions”, if both Matlab
and code are among the potential keywords, they would be
collapsed into Matlab code
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TEXTRANK FOR TEXT SUMMARIZATION

TextRank method can be also used for extracting relevant
sentences from the input text, thus, effectively enabling
automated text summarization

In this application case:
* nodes of the graph are whole sentences

» edges are established based on the sentence similarity
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TEXTRANK FOR TEXT SUMMARIZATION (CONT.)

= The intuition:

— the similarity relation between two sentences can be seenas a
act of “recommendation”. a sentence recommends other
sentences that address similar concepts

— the sentences that are highly recommended by other sentences
in the text are likely to be more informative for the given text
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TEXTRANK FOR TEXT SUMMARIZATION (CONT.)
. |

» Sentence similarity can be measured in many different ways

— E.g., cosine similarity, longest common subsequence, various string
metrics

* The authors’ original proposal is based on the content (word)
overlap of two sentences S;and §;

[{wilwy € S; &wy, € 5;}|
log(|S;]) + log(|S;])

Similarity(S;, Sj) =

The similarity measure uses the length of the sentences as the
normalization factor to avoid promotion of long sentences
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TEXTRANK FOR TEXT SUMMARIZATION (CONT.)

* The resulting graph is weighted and highly connected

— edge weights correspond to the computed similarities of the text
sentences

— graph density can be reduced by setting the minimum similarity
value for establishing a connection

* The (weighted) ranking algorithm is run on the graph
= Sentences are sorted based on their score

* The top ranked sentences are selected for the summary
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EXAMPLE WEIGHTED SENTENCE GRAPH
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Source: https://www.google.com/patents/US7809548




IMPLEMENTATION OF TEXTRANK

» TextRank method is patented:
https://www.google.com/patents/US7809548

* No ‘official’ implementation, but several implementations in
different programing languages (Java, Python, R,...)

— Easy to find by googling it
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