
	 1	

Intro	to	R	-	Part	I	

Installing	RStudio	
First,	install	the	R	framework.	Go	to	the	CRAN	website	and	in	the	section	Download	and	
Install	R	choose	a	distribution	for	your	operating	system.	

In	order	to	install	the	RStudio,	go	to	the	download	page	of	the	RStudio	website.	In	the	
section	Installers	for	Supported	Platforms,	choose	an	installer	for	your	operating	system.	
Run	the	downloaded	installer	and	complete	the	installation	process.	

Data	Types	

Vectors	
A	datum	occurring	by	itself	in	an	expression	is	taken	as	a	vector	of	length	one.	Following	
are	most	used	classes	of	vectors.	

Numeric	
x <- 41.5	
x	

## [1] 41.5	

print(class(x))	

## [1] "numeric"	

Integer	
x <- 5L	
x	

## [1] 5	

print(class(x))	

## [1] "integer"	

Character	
x <- "Hello"	
x	

## [1] "Hello"	

print(class(x))	

	 2	

## [1] "character"	

Logical	(true/false)	
x <- TRUE	
x	

## [1] TRUE	

print(class(x))	

## [1] "logical"	

When	you	want	to	create	a	vector	with	more	than	one	element,	use	the	c()	function:	

x <- c(1.4, 5.6, 3.1)	
x	

## [1] 1.4 5.6 3.1	

Vector	arithmetic	
An	arithmetic	operation	on	a	vector	results	in	a	vector	containing	values	of	that	operation	
applied	to	each	element	of	the	vector.	

x + 1	

## [1] 2.4 6.6 4.1	

-x	

## [1] -1.4 -5.6 -3.1	

2*x + 2	

## [1] 4.8 13.2 8.2	

x/2	

## [1] 0.70 2.80 1.55	

x^2	

## [1] 1.96 31.36 9.61	

Common	arithmetic	functions	are	available:	log,	exp,	sin,	cos,	tan,	sqrt,	...	

max	and	min	select	the	largest	and	smallest	elements	of	a	vector	respectively.	range	is	a	
function	that	returns	a	vector	containing	the	minimum	and	maximum	of	all	the	given	
arguments,	namely	c(min(x),	max(x)).	length(x)	is	the	number	of	elements	in	x,	sum(x)	gives	
the	total	of	the	elements	in	x,	and	prod(x)	their	product	[2].	

x1 <- c(1, 2, 3, 4, 5)	
	

	 3	

# get the max value	
max(x1)	

## [1] 5	

# get the min value	
min(x1)	

## [1] 1	

# get the range of values	
range(x1)	

## [1] 1 5	

# calculate the sum of all elements	
sum(x1)	

## [1] 15	

# calculate the product of all elements	
prod(x1)	

## [1] 120	

Generating	regular	sequences	
# generate a sequence from 1 to 10	
1:10	

## [1] 1 2 3 4 5 6 7 8 9 10	

# generate a sequence from 10 to 1	
10:1	

## [1] 10 9 8 7 6 5 4 3 2 1	

# generate a sequence from 3.2 to 4.7, with a step 0.2	
seq(3.2, 4.7, by = 0.2)	

## [1] 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6	

Factor	values	
Factors	are	used	to	represent	categorical	variables.	

x2 <- c("cold", "mild", "mild", "hot", "cold")	
x2	

## [1] "cold" "mild" "mild" "hot" "cold"	

# convert x2 to a factor variable	
temp <- factor(x2)	
	

	 4	

# print all levels 	
levels(temp)	

## [1] "cold" "hot" "mild"	

# print the summary	
summary(temp)	

## cold hot mild 	
## 2 1 2	

Missing	values	
When	an	element	or	value	is	“not	available”	or	a	“missing	value”	in	the	statistical	sense,	a	
place	within	a	vector	may	be	reserved	for	it	by	assigning	it	the	special	value	NA.	The	
function	is.na(x)	gives	a	logical	vector	of	the	same	size	as	x	with	value	TRUE	if	and	only	if	
the	corresponding	element	in	x	is	NA.	[2].	

x3 <- c(1, NA, 3, 4, NA)	
	
# check which values are NAs	
is.na(x3)	

## [1] FALSE TRUE FALSE FALSE TRUE	

A	second	kind	of	“missing”	values	which	are	produced	by	numerical	computation,	the	so-
called	Not	a	Number,	NaN,	values	[2].	

0/0	

## [1] NaN	

is.na(xx)	is	TRUE	both	for	NA	and	NaN	values.	is.nan(xx)	is	only	TRUE	for	NaNs.	

Data	frame	
Data	frames	are	matrix-like	structures,	where	the	columns	can	be	of	different	types.	It	
consists	of	a	list	of	vectors	of	equal	length.	It	is	used	for	storing	data	tables.	

# create a data frame from vectors	
weather <- data.frame(x1, x2, x3)	
weather	

## x1 x2 x3	
## 1 1 cold 1	
## 2 2 mild NA	
## 3 3 mild 3	
## 4 4 hot 4	
## 5 5 cold NA	

	 5	

Loading	existing	data	
Data	can	be	loaded	from	files.	The	most	used	file	formats	are	CSV	(Comma	Separated	
Values)	and	TSV	(Tab	Separated	Values).	In	order	to	read	a	CSV	file	The	Beatles	songs	
dataset,	v0.csv,	we	can	use	the	read.csv	function.	By	setting	the	argument	stringsAsFactors	to	
FALSE,	strings	will	not	be	converted	to	factors	(which	is	the	default	setting).	

read.csv	
# reading a data frame from the CSV file	
the.beatles.songs <- read.csv("The Beatles songs dataset, v0.csv", stringsAsF
actors = FALSE)	
the.beatles.songs	

## Title Year Duration	
## 1 12-Bar Original 1965 174	
## 2 A Day in the Life 1967 335	
## 3 A Hard Day's Night 1964 152	
## 4 A Shot of Rhythm and Blues 1963 104	
## 5 A Taste of Honey 1963 163	
## 6 Across the Universe 1968 230	
## 7 Act Naturally 1965 139	
## 8 Ain't She Sweet 1961 150	
## 9 All I've Got to Do 1963 124	

Inspecting	data	frame	
Print	the	number	of	rows.	

nrow(the.beatles.songs)	

## [1] 9	

Print	the	number	of	columns	

ncol(the.beatles.songs)	

## [1] 3	

summary	

Used	to	produce	the	summary	of	data.	

summary(the.beatles.songs)	

## Title Year Duration 	
## Length:9 Min. :1961 Min. :104.0 	
## Class :character 1st Qu.:1963 1st Qu.:139.0 	
## Mode :character Median :1964 Median :152.0 	
## Mean :1964 Mean :174.6 	
## 3rd Qu.:1965 3rd Qu.:174.0 	
## Max. :1968 Max. :335.0	

	 6	

str	

An	alternative	to	summary	(to	an	extent),	the	function	str	can	also	be	used	to	inspect	the	
data	and	compactly	display	the	internal	structure	of	a	dataframe.	

str(the.beatles.songs)	

## 'data.frame': 9 obs. of 3 variables:	
$ Title : chr "12-Bar Original" "A Day in the Life" "A Hard Day's Nigh
t" "A Shot of Rhythm and Blues" ...	
## $ Year : int 1965 1967 1964 1963 1963 1968 1965 1961 1963	
## $ Duration: int 174 335 152 104 163 230 139 150 124	

head	and	tail	

Prints	an	example	of	data	inside	a	data	frame,	first	several	items.	

# get first several rows	
head(the.beatles.songs)	

## Title Year Duration	
## 1 12-Bar Original 1965 174	
## 2 A Day in the Life 1967 335	
## 3 A Hard Day's Night 1964 152	
## 4 A Shot of Rhythm and Blues 1963 104	
## 5 A Taste of Honey 1963 163	
## 6 Across the Universe 1968 230	

# get last several rows	
tail(the.beatles.songs)	

## Title Year Duration	
## 4 A Shot of Rhythm and Blues 1963 104	
## 5 A Taste of Honey 1963 163	
## 6 Across the Universe 1968 230	
## 7 Act Naturally 1965 139	
## 8 Ain't She Sweet 1961 150	
## 9 All I've Got to Do 1963 124	

names	(colnames)	

names()	function	prints	column	names.	colnames	can	also	be	used	as	it	works	the	same	on	
data	frames	(but	not	on	other	data	types!).	

# get column names	
names(the.beatles.songs)	

## [1] "Title" "Year" "Duration"	

We	can	similarly	change	column	names.	

	 7	

# make a copy of the original data frame	
the.beatles.songs1 <- the.beatles.songs	
	
# update column names	
names(the.beatles.songs1) <- c("song_name", "release_year", "duration")	
the.beatles.songs1	

## song_name release_year duration	
## 1 12-Bar Original 1965 174	
## 2 A Day in the Life 1967 335	
## 3 A Hard Day's Night 1964 152	
## 4 A Shot of Rhythm and Blues 1963 104	
## 5 A Taste of Honey 1963 163	
## 6 Across the Universe 1968 230	
## 7 Act Naturally 1965 139	
## 8 Ain't She Sweet 1961 150	
## 9 All I've Got to Do 1963 124	

Removing	a	column	
# remove column duration	
the.beatles.songs1$duration <- NULL	
the.beatles.songs1	

## song_name release_year	
## 1 12-Bar Original 1965	
## 2 A Day in the Life 1967	
## 3 A Hard Day's Night 1964	
## 4 A Shot of Rhythm and Blues 1963	
## 5 A Taste of Honey 1963	
## 6 Across the Universe 1968	
## 7 Act Naturally 1965	
## 8 Ain't She Sweet 1961	
## 9 All I've Got to Do 1963	

Subsetting	
Print	a	specific	element	from	a	data	frame.	Indexes	start	from	1.	

# get an element from the row 3, column 1 	
song <- the.beatles.songs[3, 1]	
song	

## [1] "A Hard Day's Night"	

Retrieve	a	specific	row	or	several	rows	by	index.	

# get the third row	
beatles.subset <- the.beatles.songs[3,]	
beatles.subset	

	 8	

## Title Year Duration	
## 3 A Hard Day's Night 1964 152	

# get rows at positions from 3 to 6 	
beatles.subset1 <- the.beatles.songs[3:5,]	
beatles.subset1	

## Title Year Duration	
## 3 A Hard Day's Night 1964 152	
## 4 A Shot of Rhythm and Blues 1963 104	
## 5 A Taste of Honey 1963 163	

# get rows at positions 3 and 6 	
beatles.subset2 <- the.beatles.songs[c(3,6),]	
beatles.subset2	

## Title Year Duration	
## 3 A Hard Day's Night 1964 152	
## 6 Across the Universe 1968 230	

Retrieve	a	specific	column	by	index	or	by	name.	

# get the second column	
years <- the.beatles.songs[,2]	
years	

## [1] 1965 1967 1964 1963 1963 1968 1965 1961 1963	

# get the Year column	
years <- the.beatles.songs$Year	
years	

## [1] 1965 1967 1964 1963 1963 1968 1965 1961 1963	

Lastly,	we	can	retrieve	rows	with	a	logical	index	vector.	

# retrieve all songs released before year 1965	
songsBefore1965 <- the.beatles.songs[the.beatles.songs$Year < 1965,]	
songsBefore1965	

## Title Year Duration	
## 3 A Hard Day's Night 1964 152	
## 4 A Shot of Rhythm and Blues 1963 104	
## 5 A Taste of Honey 1963 163	
## 8 Ain't She Sweet 1961 150	
## 9 All I've Got to Do 1963 124	

retrieve all songs released before year 1965 with duration lower than 150 s
econds	
shortSongsBefore1965 <- the.beatles.songs[the.beatles.songs$Year < 1965 & the
.beatles.songs$Duration < 150,]	
shortSongsBefore1965	

	 9	

## Title Year Duration	
## 4 A Shot of Rhythm and Blues 1963 104	
## 9 All I've Got to Do 1963 124	

Task	1	
Print	a	number	of	songs	from	1963	that	last	more	than	2	minutes	(120	seconds).	

Answer:	

nrow(the.beatles.songs[the.beatles.songs$Year == 1965 & the.beatles.songs$Dur
ation > 120,])	

## [1] 2	

Plotting	
The	most	basic	function	to	create	a	plot	is	plot(x,	y),	where	x	and	y	are	numeric	vectors	
denoting	the	x	and	y	axes.	

# create a plot for the given vectors 	
plot(c(25,30,32,37), c(176,186,179,168))	

	

	 10	

For	more	advanced	plots,	ggplot2	library	is	recommended.	ggplot	function	works	with	data	
frames	and	not	individual	vectors.	All	information	that	is	part	of	the	dataframe	has	to	be	
specified	inside	the	aes()	function	that	specifies	x	and	y	axes.	

#install.packages("ggplot2")	
library(ggplot2)	
	
# render a plot for the given data frame	
ggplot(the.beatles.songs, aes(x=Year, y=Duration))	

	

A	blank	plot	is	drawn.	Even	though	the	x	and	y	are	specified,	there	are	no	points	or	lines	in	
it.	This	is	because,	ggplot	doesn’t	assume	which	plot	we	want,	a	scatterplot	or	a	line	chart.	
We	have	only	told	ggplot	what	dataset	to	use	and	what	columns	should	be	used	for	x-	and	
y-axis.	We	haven’t	explicitly	asked	it	to	draw	any	points.	Plots	are	drawn	by	adding	layers	
to	the	basic	plot	generated	by	the	ggplot	function.	More	specificly,	in	order	to	generate	a	
scatter	plot,	we	us	the	geom_point()	layer.	

# render a plot for the given data frame with points	
ggplot(the.beatles.songs, aes(x=Year, y=Duration)) + geom_point()	

	 11	

	

Similarly,	we	can	plot	a	bar	chart	by	adding	a	geom_col()	layer.	

# render a bar chart	
ggplot(the.beatles.songs, aes(x=Year, y=Duration)) + 	
 geom_col()	

	 12	

	

In	the	previous	bar	chart,	we	can	observe	that	the	x-axis	has	all	values	from	1961	to	1968,	
which	is	the	value	interval	of	the	Year	attribute.	These	include	years	1962	and	1966	that	
with	no	songs.	If	we	want	to	omit	these	two	values,	we	can	convert	the	Year	variable	to	be	a	
factor,	and	now	the	Year	variable	will	have	the	possible	values:	1961,	1963,	1964,	1965,	
1967,	and	1968.	Only	these	values	will	be	plotted.	

# convert the Year variable to factor	
the.beatles.songs$Year <- factor(the.beatles.songs$Year)	
	
# render a bar chart	
ggplot(the.beatles.songs, aes(x=Year, y=Duration)) + 	
 geom_col()	

	 13	

	

Chart	can	be	further	enhanced	by	adding	a	custom	x-	and	y-axis	labels,	and	a	chart	title.	The	
aesthetic	fill	will	take	different	colouring	scales	by	setting	the	fill	to	be	equal	to	a	factor	
variable.	

# render a bar chart with custom title and axes labels 	
ggplot(the.beatles.songs, aes(x=Year, y=Duration, fill = Year)) + 	
 geom_col() +	
 xlab("Song release years") + ylab("Song duration") +	
 ggtitle("Duration of songs throughout the years")	

	 14	

	

geom_bar()	makes	the	height	of	the	bar	proportional	to	the	number	of	cases	in	each	group.	
In	this	case,	we	provide	only	one	variable	for	x-axis.	

render a bar chart where the y-axis displays number of cases for each value
on the x-axis	
ggplot(the.beatles.songs, aes(x=Year, fill=Year)) + 	
 geom_bar() +	
 xlab("Song release years") + ylab("Number of songs") +	
 ggtitle("Number of songs throughout the years")	

	 15	

	

Line	chart	can	be	added	by	adding	the	geom_line	layer.	geom_line()	tries	to	connect	data	
points	that	belong	to	the	same	group.	Different	levels	of	a	factor	variable	belong	to	different	
groups.	By	specifying	group=1	we	indicate	we	want	a	single	line	connecting	all	the	points.	

render a line chart for the first five songs with specific line and ponts p
roperties	
ggplot(the.beatles.songs[1:5,], aes(x=Year, y=Duration, group = 1)) +	
 geom_line(colour = "blue", linetype = "dotted", size = 2) + 	
 geom_point(colour="green", size = 4, shape = 22, fill = "yellow") +	
 xlab("Song release years") + ylab("Song duration") +	
 ggtitle("Duration of songs throughout the years")	

	 16	

	

Task	2	
Create	a	line	chart	with	x-axis	containing	the	following	years:	1960,	1970,	1980,	1990,	
2000,	2002,	2004,	2006,	2008,	2010.	The	y-axis	should	have	the	following	values	of	CO2	
emissions:	0.836046900792028,	0.942934534989582,	1.49525074931082,	
2.16770307659104,	2.69686243322549,	2.88522504139331,	4.08013890554173,	
4.89272709798477,	5.31115185538876,	6.19485757472686.	Chart	title	should	say	"China	
CO2	Emissions,	Yearly"	and	y-axis	should	have	a	label	"CO2	Emissions	(metric	tonnes	per	
capita)".	

Answer:	

co2.emissions <- data.frame(
 year = c(1960, 1970, 1980, 1990, 2000, 2002, 2004, 2006, 2008, 2010),	
 emission = c(0.836046900792028, 0.942934534989582, 1.49525074931082, 2.1677
0307659104, 2.69686243322549, 2.88522504139331, 4.08013890554173, 4.89272709
798477, 5.31115185538876, 6.19485757472686)	
)	
	
ggplot(co2.emissions, aes(x = year, y = emission, group = 1)) +	
 geom_line() + 	
 ylab("CO2 Emissions (metric tonnes per capita)") +	
 ggtitle("China CO2 Emissions, Yearly")	

	 17	

	

Homework	-	Complete	interactive	R	tutorials	with	Swirl	
Swirl	is	an	interactive	R	tutorial	that	teaches	you	R	from	the	R	console.	All	you	need	to	do	is	
install	Swirl	package	for	R	and	issue	a	swirl()	command	which	will	start	the	tutorial.	

#install.packages("swirl")	
library("swirl")	
swirl()	

Once	a	Swirl	session	is	started,	you	will	be	prompted	with	an	option	to	install	a	Swirl	
course.	For	our	course,	you	need	to	install	the	R	Programming:	The	basics	of	programming	
in	R	Swirl	course	and	go	through	the	following	tutorials:	

1. Basic	Building	Blocks	
2. Workspace	and	Files	
3. Sequences	of	Numbers	
4. Vectors	
5. Missing	Values	
6. Subsetting	Vectors	
7. Matrices	and	Data	Frames	

	 18	

8. Logic	
9. Functions	
10. Looking	at	Data	

References	
[1]	https://www.tutorialspoint.com/r/r_data_types.htm	[2]	An	Introduction	to	R,	
https://cran.r-project.org/doc/manuals/R-intro.pdf	

