Introto R - Part |

Installing RStudio

First, install the R framework. Go to the CRAN website and in the section Download and
Install R choose a distribution for your operating system.

In order to install the RStudio, go to the download page of the RStudio website. In the
section Installers for Supported Platforms, choose an installer for your operating system.
Run the downloaded installer and complete the installation process.

Data Types

Vectors

A datum occurring by itself in an expression is taken as a vector of length one. Following
are most used classes of vectors.

Numeric
X <- 41.5
X

[1] 41.5
print(class(x))
[1] "numeric”

Integer
X <- 5L
X

[1] 5
print(class(x))

[1] "integer"

Character
X <- "Hello"
X

[1] "Hello"

print(class(x))

[1] "character"

Logical (true/false)
X <- TRUE
X

[1] TRUE

print(class(x))

[1] "logical”

When you want to create a vector with more than one element, use the ¢() function:

x <- c(1.4, 5.6, 3.1)
X

[1] 1.4 5.6 3.1

Vector arithmetic

An arithmetic operation on a vector results in a vector containing values of that operation
applied to each element of the vector.

X + 1

[1] 2.4 6.6 4.1

-X

[1] -1.4 -5.6 -3.1
2*¥x + 2

[1] 4.8 13.2 8.2
x/2

[1] ©.70 2.80 1.55
X"2

[1] 1.96 31.36 9.61
Common arithmetic functions are available: log, exp, sin, cos, tan, sqrt, ...

max and min select the largest and smallest elements of a vector respectively. range is a
function that returns a vector containing the minimum and maximum of all the given
arguments, namely c(min(x), max(x)). length(x) is the number of elements in x, sum(x) gives
the total of the elements in x, and prod(x) their product [2].

x1 <- c(1, 2, 3, 4, 5)

get the max value
max(x1)

[1] 5

get the min value
min(x1)

[1] 1

get the range of values
range(x1)

[1] 1 5

calculate the sum of all elements
sum(x1)

[1] 15

calculate the product of all elements
prod(x1)

[1] 120
Generating regular sequences

generate a sequence from 1 to 10
1:10

[1] 1 2 3 4 5 6 7 8 910

generate a sequence from 10 to 1
10:1

[1] 16 9 8 7 6 5 4 3 2 1

generate a sequence from 3.2 to 4.7, with a step 0.2
seq(3.2, 4.7, by = 0.2)

[1] 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

Factor values

Factors are used to represent categorical variables.

x2 <- c¢("cold", "mild", "mild", "hot", "cold")
X2

[1] "cold" "mild" "mild" "hot" "cold"

convert x2 to a factor variable
temp <- factor(x2)

print all Llevels
levels(temp)

[1] "cold" "hot" "mild"

print the summary
summary (temp)

cold hot mild
it 2 1 2

Missing values

When an element or value is “not available” or a “missing value” in the statistical sense, a
place within a vector may be reserved for it by assigning it the special value NA. The
function is.na(x) gives a logical vector of the same size as x with value TRUE if and only if
the corresponding element in x is NA. [2].

x3 <- c(1, NA, 3, 4, NA)

check which values are NAs
is.na(x3)

[1] FALSE TRUE FALSE FALSE TRUE

A second kind of “missing” values which are produced by numerical computation, the so-
called Not a Number, NaN, values [2].

0/0
[1] NaN

is.na(xx) is TRUE both for NA and NaN values. is.nan(xx) is only TRUE for NaNs.

Data frame

Data frames are matrix-like structures, where the columns can be of different types. It
consists of a list of vectors of equal length. It is used for storing data tables.

create a data frame from vectors
weather <- data.frame(x1l, x2, x3)
weather

x1 X2 X3

1 1 cold 1
2 2 mild NA
3 3 mild 3
4 4 hot 4
5 5 cold NA

Loading existing data

Data can be loaded from files. The most used file formats are CSV (Comma Separated
Values) and TSV (Tab Separated Values). In order to read a CSV file The Beatles songs
dataset, v0.csv, we can use the read.csv function. By setting the argument stringsAsFactors to
FALSE, strings will not be converted to factors (which is the default setting).

read.csv

reading a data frame from the CSV file

the.beatles.songs <- read.csv("The Beatles songs dataset, v@.csv", stringsAsF
actors = FALSE)

the.beatles.songs

Title Year Duration
#H# 1 12-Bar Original 1965 174
##t 2 A Day in the Life 1967 335
##t 3 A Hard Day's Night 1964 152
4 A Shot of Rhythm and Blues 1963 104
5 A Taste of Honey 1963 163
6 Across the Universe 1968 230
##t 7 Act Naturally 1965 139
8 Ain't She Sweet 1961 150
9 All I've Got to Do 1963 124

Inspecting data frame
Print the number of rows.
nrow(the.beatles.songs)
[1] 9

Print the number of columns
ncol(the.beatles.songs)
[1] 3

summary

Used to produce the summary of data.

summary (the.beatles.songs)

Title Year Duration

Length:9 Min. :1961 Min. :104.0
Class :character 1st Qu.:1963 1st Qu.:139.0
Mode :character Median :1964 Median :152.0
Mean 11964 Mean :174.6
3rd Qu.:1965 3rd Qu.:174.0
Max. :1968 Max. :335.0

str

An alternative to summary (to an extent), the function str can also be used to inspect the
data and compactly display the internal structure of a dataframe.

str(the.beatles.songs)

'data.frame': 9 obs. of 3 variables:

¢ Title : chr "12-Bar Original™ "A Day in the Life"™ "A Hard Day's Nigh
t" "A Shot of Rhythm and Blues"

$ Year : int 1965 1967 1964 1963 1963 1968 1965 1961 1963

$ Duration: int 174 335 152 104 163 230 139 150 124

head and tail

Prints an example of data inside a data frame, first several items.

get first several rows
head(the.beatles.songs)

Title Year Duration
#H# 1 12-Bar Original 1965 174
##t 2 A Day in the Life 1967 335
##t 3 A Hard Day's Night 1964 152
4 A Shot of Rhythm and Blues 1963 104
5 A Taste of Honey 1963 163
6 Across the Universe 1968 230

get last several rows
tail(the.beatles.songs)

Title Year Duration
4 A Shot of Rhythm and Blues 1963 104
5 A Taste of Honey 1963 163
6 Across the Universe 1968 230
7 Act Naturally 1965 139
8 Ain't She Sweet 1961 150
9 All I've Got to Do 1963 124

names (colnames)

names() function prints column names. colnames can also be used as it works the same on
data frames (but not on other data types!).

get column names
names (the.beatles.songs)

[1] "Title" "Year" "Duration”

We can similarly change column names.

make a copy of the original data frame
the.beatles.songsl <- the.beatles.songs

update column names
names (the.beatles.songsl) <- c("song name", "release year", "duration")
the.beatles.songsl

song_name release_year duration
#H# 1 12-Bar Original 1965 174
##t 2 A Day in the Life 1967 335
##t 3 A Hard Day's Night 1964 152
4 A Shot of Rhythm and Blues 1963 104
5 A Taste of Honey 1963 163
##t 6 Across the Universe 1968 230
##t 7 Act Naturally 1965 139
8 Ain't She Sweet 1961 150
9 All I've Got to Do 1963 124

Removing a column

remove column duration
the.beatles.songsl$duration <- NULL
the.beatles.songsl

#it song_name release_year
#H# 1 12-Bar Original 1965
##t 2 A Day in the Life 1967
3 A Hard Day's Night 1964
4 A Shot of Rhythm and Blues 1963
5 A Taste of Honey 1963
##t 6 Across the Universe 1968
##t 7 Act Naturally 1965
8 Ain't She Sweet 1961
9 All I've Got to Do 1963
Subsetting

Print a specific element from a data frame. Indexes start from 1.

get an element from the row 3, column 1
song <- the.beatles.songs[3, 1]
song

[1] "A Hard Day's Night"
Retrieve a specific row or several rows by index.

get the third row
beatles.subset <- the.beatles.songs[3,]
beatles.subset

H#it Title Year Duration
3 A Hard Day's Night 1964 152

get rows at positions from 3 to 6
beatles.subsetl <- the.beatles.songs[3:5,]
beatles.subsetl

#it Title Year Duration
##t 3 A Hard Day's Night 1964 152
4 A Shot of Rhythm and Blues 1963 104
5 A Taste of Honey 1963 163

get rows at positions 3 and 6
beatles.subset2 <- the.beatles.songs[c(3,6),]
beatles.subset2

#it Title Year Duration
3 A Hard Day's Night 1964 152
6 Across the Universe 1968 230

Retrieve a specific column by index or by name.

get the second column
years <- the.beatles.songs[,2]
years

[1] 1965 1967 1964 1963 1963 1968 1965 1961 1963

get the Year column
years <- the.beatles.songs$Year
years

[1] 1965 1967 1964 1963 1963 1968 1965 1961 1963

Lastly, we can retrieve rows with a logical index vector.

retrieve all songs released before year 1965
songsBeforel965 <- the.beatles.songs[the.beatles.songs$Year < 1965,]
songsBeforel965

Hit Title Year Duration
##t 3 A Hard Day's Night 1964 152
4 A Shot of Rhythm and Blues 1963 104
5 A Taste of Honey 1963 163
8 Ain't She Sweet 1961 150
9 All I've Got to Do 1963 124

retrieve all songs released before year 1965 with duration lLower than 150 s
econds

shortSongsBeforel965 <- the.beatles.songs[the.beatles.songs$Year < 1965 & the
.beatles.songs$Duration < 159,]

shortSongsBeforel965

H#it Title Year Duration

4 A Shot of Rhythm and Blues 1963 104
9 All I've Got to Do 1963 124
Task 1

Print a number of songs from 1963 that last more than 2 minutes (120 seconds).
Answer:

nrow(the.beatles.songs[the.beatles.songs$Year == 1965 & the.beatles.songs$Dur
ation > 120,])

[1] 2

Plotting

The most basic function to create a plot is plot(x, y), where x and y are numeric vectors
denoting the x and y axes.

create a plot for the given vectors
plot(c(25,30,32,37), c(176,186,179,168))

w O

w—
—~
(e 0]
(o]
—
. o
o o —
~ Y O
—
©
0 W O
-— N~
-
(o]
M~
- oo
(&] [

b

O

I I I T I I
26 28 30 32 34 36

c(25, 30, 32, 37)

For more advanced plots, ggplot2 library is recommended. ggplot function works with data
frames and not individual vectors. All information that is part of the dataframe has to be
specified inside the aes() function that specifies x and y axes.

#install.packages("ggplot2")
library(ggplot2)

render a plot for the given data frame
ggplot(the.beatles.songs, aes(x=Year, y=Duration))

Duration

1962 1964 1966 1968

Year

A blank plot is drawn. Even though the x and y are specified, there are no points or lines in
it. This is because, ggplot doesn’t assume which plot we want, a scatterplot or a line chart.
We have only told ggplot what dataset to use and what columns should be used for x- and
y-axis. We haven’t explicitly asked it to draw any points. Plots are drawn by adding layers
to the basic plot generated by the ggplot function. More specificly, in order to generate a
scatter plot, we us the geom_point() layer.

render a plot for the given data frame with points
ggplot(the.beatles.songs, aes(x=Year, y=Duration)) + geom_point()

10

300~

250 -
[
Re
©
[.
=
0 200-
L]
®
150- g
®
®
100 - -
1962 1964 1966

Similarly, we can plot a bar chart by adding a geom_col() layer.

render a bar chart
ggplot(the.beatles.songs, aes(x=Year, y=Duration)) +
geom_col()

1968

11

400 -

300~
100- I I

O-

Duration
N
(]
o

1962 1964 1966 1968
Year

In the previous bar chart, we can observe that the x-axis has all values from 1961 to 1968,
which is the value interval of the Year attribute. These include years 1962 and 1966 that
with no songs. If we want to omit these two values, we can convert the Year variable to be a
factor, and now the Year variable will have the possible values: 1961, 1963, 1964, 1965,
1967, and 1968. Only these values will be plotted.

convert the Year variable to factor
the.beatles.songs$Year <- factor(the.beatles.songs$Year)

render a bar chart
ggplot(the.beatles.songs, aes(x=Year, y=Duration)) +
geom_col()

12

400 -

300~
100- l I I

1961 1963 1964 1965 1967 1968
Year

Duration
N
(]
o

Chart can be further enhanced by adding a custom x- and y-axis labels, and a chart title. The
aesthetic fill will take different colouring scales by setting the fill to be equal to a factor
variable.

render a bar chart with custom title and axes Llabels
ggplot(the.beatles.songs, aes(x=Year, y=Duration, fill = Year)) +
geom_col() +
xlab("Song release years") + ylab("Song duration") +
ggtitle("Duration of songs throughout the years")

13

Duration of songs throughout the years
400 -

300 -
200 -
: I I

1961 1963 1964 1965 1967 1968
Song release years

Song duration

geom_bar() makes the height of the bar proportional to the number of cases in each group.
In this case, we provide only one variable for x-axis.

render a bar chart where the y-axis displays number of cases for each value
on the x-axis
ggplot(the.beatles.songs, aes(x=Year, fill=Year)) +

geom_bar() +

xlab("Song release years") + ylab("Number of songs") +

ggtitle("Number of songs throughout the years")

14

Number of songs throughout the years

3

2-
0-

1961 1963 1964 1965 1967 1968
Song release years

Number of songs

Line chart can be added by adding the geom_line layer. geom_line() tries to connect data
points that belong to the same group. Different levels of a factor variable belong to different
groups. By specifying group=1 we indicate we want a single line connecting all the points.

render a Line chart for the first five songs with specific Line and ponts p

roperties

ggplot(the.beatles.songs[1:5,], aes(x=Year, y=Duration, group = 1)) +
geom_line(colour = "blue", linetype = "dotted", size = 2) +
geom_point(colour="green", size = 4, shape = 22, fill = "yellow") +

xlab("Song release years") + ylab("Song duration") +
ggtitle("Duration of songs throughout the years")

15

Duration of songs throughout the years

©
&
300 -
S
»
B
S 250-
2 I
o
S N
©
o E
c 200-
UO) &
.
|
o |)
150 - " E g
o o
n
100 -
1963 1964 1965 1967
Song release years
Task 2

Create a line chart with x-axis containing the following years: 1960, 1970, 1980, 1990,
2000, 2002, 2004, 2006, 2008, 2010. The y-axis should have the following values of CO2
emissions: 0.836046900792028, 0.942934534989582, 1.49525074931082,
2.16770307659104, 2.69686243322549, 2.88522504139331, 4.08013890554173,
4.89272709798477,5.31115185538876, 6.19485757472686. Chart title should say "China
CO2 Emissions, Yearly" and y-axis should have a label "CO2 Emissions (metric tonnes per
capita)".

Answer:

co2.emissions <- data.frame(
year = c(1960, 1970, 1980, 1990, 2000, 2002, 2004, 2006, 2008, 2010),
emission = c(0.836046900792028, ©.942934534989582, 1.49525074931082, 2.1677
0307659104, 2.69686243322549, 2.88522504139331, 4.08013890554173, 4.89272709
798477, 5.31115185538876, 6.19485757472686)

)

ggplot(co2.emissions, aes(x = year, y = emission, group = 1)) +
geom_line() +
ylab("C02 Emissions (metric tonnes per capita)") +
ggtitle("China CO2 Emissions, Yearly")

16

China CO2 Emissions, Yearly

4 o))
' '

N
'

r

CO2 Emissions (metric tonnes per capita)

1960 1970 1980 1990 2000 2010
year

Homework - Complete interactive R tutorials with Swirl

Swirl is an interactive R tutorial that teaches you R from the R console. All you need to do is
install Swirl package for R and issue a swirl() command which will start the tutorial.

#install.packages("swirl")
library("swirl")
swirl()

Once a Swirl session is started, you will be prompted with an option to install a Swirl
course. For our course, you need to install the R Programming: The basics of programming
in R Swirl course and go through the following tutorials:

1. Basic Building Blocks
Workspace and Files
Sequences of Numbers
Vectors

Missing Values

Subsetting Vectors
Matrices and Data Frames

NS W

17

8. Logic
9. Functions
10. Looking at Data

References

[1] https://www.tutorialspoint.com/r/r_data_types.htm [2] An Introduction to R,
https://cran.r-project.org/doc/manuals/R-intro.pdf

18

