Linear Regression

Loading the required R packages

library(MASS)
#install.packages('corrplot’)
library(corrplot)
library(ggplot2)

We use the Boston dataset that is a part of the MASS R package. Let's start by examining the
dataset:

str(Boston)

## 'data.frame': 506 obs. of 14 variables:

## $ crim : num ©.00632 0.02731 0.02729 0.03237 0.06905 ...

## $ zn :hum 18 9 © © 0 © 12.5 12.5 12.5 12.5 ...

## $ indus : num 2.31 7.7 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
## $ chas :int 0000000000 ...

## $ nox : num ©.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524
0.524 ...

## $ rm : num 6.58 6.42 7.18 7 7.15

## ¢ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
## $ dis : num 4.09 4.97 4.97 6.06 6.06 ...

## $ rad :int 12233355565 ...

## $ tax :num 296 242 242 222 222 222 311 311 311 311 ...

## ¢ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
## $ black : num 397 397 393 395 397 ...

## $ 1lstat : num 4.98 9.14 4.03 2.94 5.33 ...

## $ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

We will seek to predict medv (median house value) using (some of) the other 13 variables.

To find out more about the data set, type ?Boston

?Boston

Let's start by examining which of the 13 predictors might be relevant for predicting the
response valiable (medv). One way to do that is to examine correlation between the
predictors and the response variable.

Since we have many variables, examining a correlation matrix will not be that easy, so, it is
better to plot the correlations. To that end, we'll use the corrplot package. To explore the
plotting options offered by this package, check: https://cran.r-
project.org/web/packages/corrplot/vignettes/corrplot-intro.html



# compute the correlation matrix

corr.matrix <- cor(Boston)

# one option for plotting correlations: using colors to represent the extent

of correlation

corrplot(corr.matrix, method = "number", type = "upper", diag = FALSE,
number.cex=0.75, tl.cex = 0.85)
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# another option, with both colors and exact correlation scores
corrplot.mixed(corr.matrix, tl.cex=0.75, number.cex=0.75)
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Predictors Istat (percent of households with low socioeconomic status) and rm (average
number of rooms per house) have the highest correlation with the outcome variable.

To examine this further, we can plot Istat and rm against the response variable.

pl <- ggplot(data = Boston, mapping = aes(x = lstat, y = medv)) +
geom_point(shape = 1)
pl
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p2 <- ggplot(data = Boston, mapping = aes(x = rm, y = medv)) +
geom_point(shape = 1)
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Simple Linear Regression

Let's start by building a simple linear regression model, with medv as the response and Istat
as the predictor.

Iml <- 1Im(medv ~ lstat, data = Boston)
summary(1ml)

##t

## Call:

## lm(formula = medv ~ lstat, data = Boston)

##t

## Residuals:

## Min 1Q Median 3Q Max

## -15.168 -3.990 -1.318 2.034 24.500

##t

## Coefficients:

#Hi#t Estimate Std. Error t value Pr(>|t])

## (Intercept) 34.55384 0.56263 61.41 <2e-16 ***

## lstat -0.95005 0.03873 -24.53 <2e-16 ***

H# ---

## Signif. codes: @ '***' 9,001 '**' @9.01 '*' ©0.05 '.' 0.1 ' ' 1
##t

## Residual standard error: 6.216 on 504 degrees of freedom
## Multiple R-squared: ©0.5441, Adjusted R-squared: ©0.5432
## F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

As we see, the summary() function gives us:

. p-values and standard errors for the coefficients,
e R-squared (R2) statistic
. F-statistic for the model

In particular, we can conclude the following:

e Dbased on the coefficient of the Istat variable, with each unit increase in Istat, that is,
with a percentage increase in the households with low socioeconomic status, median
house value decreases by 0.95005 units.

e based on the R2 value, this model explains 54.4% of variability in the median house
value.

e based on the F statistic and the associated p-value, there is a significant linear relation
between the predictor and the response variable.

To find out what other pieces of information are stored in the fitted model (that is, the Im1
object), we can use the names() f.

names (1ml)



## [1] "coefficients" "residuals” "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual”
## [9] "xlevels" "call” "terms" "model"”

So, for instance, to get the coefficients of the model:
Imi$coefficients

## (Intercept) lstat
## 34.5538409 -0.9500494

Note, there is also the coef() f. that returns the coefficients:

coef(1lml)

## (Intercept) lstat
## 34.5538409 -0.9500494

Or, if we want to compute the residual sum of squares (RSS):

Iml rss <- sum(lmi$residuals”2)
Iml_rss

## [1] 19472.38

Recall that the obtained coefficent values are just estimates (of the real coefficient values)
obtained using one particular sample from the target population. If some other sample was
taken, these estimates might have been somewhat different. So, we usually compute the 95
confidence interval for the coefficients to get an interval of values within which we can
expect, in 95% of cases (i.e. 95% of examined samples), that the 'true' value for the
coefficents will be.

confint(1lml, level = 0.95)

## 2.5 % 97.5 %
## (Intercept) 33.448457 35.6592247
## lstat -1.026148 -0.8739505

Now that we have a model, we can predict the value of medv based on the given Istat values.
To do that, we will create a tiny test data frame.

df.test <- data.frame(lstat=c(5, 10, 15))
predict(1lml, newdata = df.test)

#H# 1 2 3
## 29.80359 25.05335 20.30310

We can also include the confidence interval for the predictions:
predict(lml, newdata = df.test, interval = "confidence")

## fit lwr upr
## 1 29.80359 29.00741 30.59978



## 2 25.05335 24.47413 25.63256
## 3 20.30310 19.73159 20.87461

Or, we can examine prediction intervals:

predict(1lml, newdata = df.test, interval = "predict")

## fit lwr upr
## 1 29.80359 17.565675 42.04151
## 2 25.05335 12.827626 37.27907
## 3 20.30310 8.077742 32.52846

Notice the difference between the confidence and prediction intervals - the latter are much
wider, reflecting far more uncertainty in the predicted value. Hint: recall the difference
between the prediction and confidence intervals.

Now, we have to examine how well our model 'fits the data'. To do that, we will first plot the
regression line, and observe how well the regression line fits the data

ggplot(data = Boston, mapping = aes(x = lstat, y = medv)) +
geom_point(shape = 1) +
geom_smooth(method = "1m")
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The plot indicates that there is some non-linearity in the relationship between Istat and
medyv.

Next, we will use diagnostic plots to examine the model fittness in more detail. Four
diagnostic plots are automatically produced by passing the output from Im() function (e.g.



Im1) to the plot() function. This will produce one plot at a time, and hitting Enter will
generate the next plot. However, it is often convenient to view all four plots together. We
can achieve this by using the par() function, which tells R to split the display screen into
separate panels so that multiple plots can be viewed simultaneously.

par(mfrow=c(2,2)) # splitting the plotting area into 4 cells
plot(1ml)
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par(mfrow=c(1,1)) # reseting the plotting area
Interpretation of the plots:

e the 1st plot, Residual vs Fitted value, is used for checking if the linearity assumption is
satisfied. The plot shows that there is some indication of non-linear relationship
between the predictor and the response variable

e the 2nd plot, Q-Q plot, tells us if residuals are normally distributed; in this case we see
a considerable deviation from the diagonal, and therefore, from normal distribution

e the 3rd plotis used for checking the assumption of equal variance of residuals
(homoscedasticity); in this case, the variance of the residuals tends to differ, so, the
assumption is not fulfiled

e the 4th plot is used for spotting the presence of high leverage points; those would be
the observations that have unusually high value of the predictor variable(s); their



presence can seriously affect the estimation of the coefficients; they can be spotted as
being outside of the Cook’s distance (meaning they have high Cook’s distance scores);
in this case there are several such observations

For a nice explanation of the diagnostic plots, check this article:
http://data.library.virginia.edu/diagnostic-plots/

If we want to examine leverage points in more detail, we can compute the leverage statistic
using the hatvalues() function:

Iml.leverage <- hatvalues(1lml)
plot(1lml.leverage)
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The plot suggests that there are several observations with high leverage values. We can
check this further by examining the value of leverage statistic for the observations.
Leverage statistics is always between 1/n and 1 (n is the number of observations);
observations with leverage statistic considerably above 2*(p+1)/n (p is the number of
predictors) are often considered as high leverage points. Let's check this for our data:

n <- nrow(Boston)

p <-1

cutoff <- 2*(p+1)/n
length(which(1lml.leverage > cutoff))

## [1] 34

The results confirm that there are several (34) high leverage points.



Multiple Linear Regression

Let's now extend our model by including some other predictor variables that have high
correlation with the response variable. Based on the correlation plot, we can include rm
(average number of rooms per house) and ptratio (pupil-teacher ratio by town).

Scatterplot matrices are useful for examining the presence of linear relationship between
several pairs of variables

pairs(~medv + lstat + rm + ptratio, data = Boston)
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Far from perfect linear relation, but let's see what the model will look like.

To be able to properly test our model (not use fictitious data points as we did in the case of
simple linear regression), we need to split our dataset into:

e  training data that will be used to build a model
e testdata to be used to evaluate / test the predictive power of our model.

Typically, 80% of observations are used for training and the rest for testing.

When splitting the dataset, we need to assure that observations are randomly assigned to
the training and testing data sets. In addition, we should assure that the outcome variable



has the same distribution in the train and test sets. This can be easily done using the
createDataPartition() f. from the caret package

# install.packages('caret’)
library(caret)

## Loading required package: lattice

# assure the replicability of the results by setting the seed
set.seed(123)

# generate 1indices of the observations to be selected for the training set
train.indices <- createDataPartition(Boston$medv, p = 0.80, list = FALSE)
# select observations at the positions defined by the train.indices vector
train.boston <- Boston[train.indices, ]

# select observations at the positions that are NOT in the train.indices
vector

test.boston <- Boston[-train.indices, ]

Check that the outcome variable (medv) has the same distribution in the training and test
sets

summary(train.boston$medv)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
#it 5.00 16.95 21.20 22.74 25.00 50.00

summary(test.boston$medv)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
H#it 5.00 17.05 21.00 21.68 24.65 50.00

Now, build a model using the training data set

Im2 <- lm(medv ~ lstat + rm + ptratio, data = train.boston)
summary (1m2)

##

## Call:

## lm(formula = medv ~ lstat + rm + ptratio, data = train.boston)
##t

## Residuals:

## Min 1Q Median 3Q Max

## -14.8219 -3.0757 -0.8036 1.7893 29.7479

#i#

## Coefficients:

#Hi# Estimate Std. Error t value Pr(>|t])

## (Intercept) 18.11824 4.33535 4.179 3.59e-05 ***
## lstat -0.56496 0.04778 -11.824 < 2e-16 ***
## rm 4.62379 0.45996 10.053 < 2e-16 ***
## ptratio -0.94082 0.13192 -7.132 4.63e-12 ***
## ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1



##

## Residual standard error: 5.181 on 403 degrees of freedom
## Multiple R-squared: ©0.6935, Adjusted R-squared: ©0.6912
## F-statistic: 303.9 on 3 and 403 DF, p-value: < 2.2e-16

From the summary, we can see that:

e R-squared has increased considerably, from 0.544 to 0.694 even though we have built
it with a smaller dataset (407 observations, instead of 506 observations).

e all 3 predictors are highly significant

TASK 1: Interpret the estimated coefficients (see how it was done for the simple linear
regression).

TASK 2: use diagnostic plots to examine how well the model adheres to the assumptions.

Let's make predictions using this model on the test data set that we have created

Im2.predict <- predict(lm2, newdata = test.boston)
head(1m2.predict)

## 3 5 11 12 14 15
## 32.31678 30.55989 21.75026 24.10511 21.20138 20.75116

To examine the predicted against the real values of the response variable (medv), we can
plot their distributions one against the other

test.boston.1m2 <- cbind(test.boston, pred = 1lm2.predict)
ggplot() +
geom_density(data
+
geom_density(data
'predicted')) +
scale_colour_discrete(name ="medv distribution™)

test.boston.1m2, mapping = aes(x=medv, color ‘real'))

test.boston.1m2, mapping

aes(x=pred, color
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To evalute the predictive power of the model, we'll compute R-squared on the test data.
Recall that R-squared is computed as 1 - RSS/TSS, where TSS is the total sum of squares

Im2.test.RSS <- sum((lm2.predict - test.boston$medv)”2)
Im.test.TSS <- sum((mean(train.boston$medv) - test.boston$medv)”2)
Im2.test.R2 <- 1 - 1Im2.test.RSS/1lm.test.TSS

Im2.test.R2

## [1] 0.6076704

R2 on the test is lower than the one obtained on the training set, which is expected.

Let's also compute Root Mean Squared Error (RMSE) to see how much error we are making
with the predictions. Recall: RMSE = sqrt(RSS/n)

Im2.test.RMSE <- sqrt(lm2.test.RSS/nrow(test.boston))
1m2.test.RMSE

## [1] 5.432056

To get a perspective of how large this error is, let's check the mean value of the response
variable on the test set:

mean(test.boston$medv)



## [1] 21.68384
Im2.test.RMSE/mean(test.boston$medv)

## [1] ©.2505117
So, it's not a small error, it's about 25% of the mean value

Let's now build another model using all available predictors:

[

Im3 <- lm(medv ~ ., data = train.boston) # note the use of '.' to mean all

variables

summary (1m3)

#H#

## Call:

## Im(formula = medv ~ ., data = train.boston)

#H#

## Residuals:

## Min 1Q Median 3Q Max

## -15.1772 -2.6987 -0.5194 1.7225 26.0486

#H#

## Coefficients:

#Hi#t Estimate Std. Error t value Pr(>|t])

## (Intercept) 3.759e+01 5.609e+00 6.702 7.17e-11 ***
## crim -9.610e-02 4.024e-02 -2.388 0.01741 *
## zn 4.993e-02 1.521e-02 3.283 0.00112 **
## indus -5.789e-03 6.745e-02 -0.086 0.93166

## chas 2.292e+00 1.019e+00 2.250 0.02501 *
## nox -1.723e+01 4.244e+00 -4.059 5.95e-05 ***
## rm 3.784e+00 4.537e-01 8.341 1.26e-15 ***
## age 8.387e-04 1.450e-02 0.058 0.95391

## dis -1.620e+00 2.217e-01 -7.310 1.50e-12 ***
## rad 3.031e-01 7.434e-02 4.078 5.51e-05 ***
## tax -1.316e-02 4.144e-03 -3.176 0.00161 **
## ptratio -9.582e-01 1.473e-01 -6.505 2.37e-10 ***
## black 9.723e-03 2.993e-03 3.249 0.00126 **
## lstat -5.297e-01 5.691e-02 -9.308 < 2e-16 ***
## ---

## Signif. codes: © '"***' 9,001 '**' @9.01 '*' ©0.05 '.' 0.1 ' ' 1
#i#

## Residual standard error: 4.692 on 393 degrees of freedom
## Multiple R-squared: ©0.7549, Adjusted R-squared: ©0.7468
## F-statistic: 93.1 on 13 and 393 DF, p-value: < 2.2e-16

Note that even though we now have 13 predictors, we haven't much improved the R-
squared value: in the model with 3 predictors, it was 0.693 and now it is 0.755. In addition,
it should be recalled that R2 increases with the increase in the number of predictors, no
matter how good/useful they are.



The 3 predictors from the previous model are still highly significant, plus, there are a

number of other significant variables.

Let's do the prediction using the new model:

Im3.predict <- predict(lm3, newdata = test.boston)

head(1m3.predict)

#H# 3 5 11 12 14 15
## 30.70615 28.05079 18.88585 21.53429 19.68122 19.43022

Plot the distribution of predictions against the real values of the response variable (medv)

test.boston.1m3 <- cbind(test.boston, pred = 1lm3.predict)

ggplot() +
geom_density(data = test.boston.lm3, mapping =
+
geom_density(data = test.boston.lm3, mapping = aes(x=pred, color
‘predicted')) +
="medv distribution")
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As before, we'll compute R-squared on the test data:

= aes(x=medv, color =

v distribution
predicted

real

‘real'))



Im3.test.RSS <- sum((lm3.predict - test.boston$medv)”2)
Im3.test.R2 <- 1 - 1Im3.test.RSS/1Im.test.TSS
Im3.test.R2

## [1] ©.6685588
Again, we got lower R2 than on the train set.

We can also compute RMSE:

Im3.test.RMSE <- sqrt(lm3.test.RSS/nrow(test.boston))
1m3.test.RMSE

## [1] 4.992775

It is lower (therefore, better) than with the previous model.

TASK: use diagnostic plots to examine how well the model adheres to the assumptions.

Considering the number of variables in the model, we should check for multicolinearity. To
do that, we'll compute the variance inflation factor (VIF):

library(car)

vif(1m3)

## crim zn indus chas nox rm age dis
## 1.865531 2.364859 3.901322 1.064429 4.471619 2.010665 3.018555 3.961686
## rad tax ptratio black lstat

## 7.799919 9.163102 1.907071 1.311933 2.967784

As a rule of thumb, variables having sqrt(vif) > 2 are problematic

sqrt(vif(1m3))

## crim zn indus chas nox rm age dis
## 1.365844 1.537810 1.975177 1.031712 2.114620 1.417979 1.737399 1.990398
## rad tax ptratio black lstat

## 2.792833 3.027062 1.380967 1.145396 1.722726

So, tax and rad exhibit multicolinearity - if we go back to the correlation plot, we'll see that
they are, indeed, highly correlated (0.91). There are also a few suspicious variables: indus,
nox, and dis.

TASK: create a new model (Im4) by excluding either tax or rad variable. Compare the new
model with Im3.



