
Linear	Regression	
	

Loading	the	required	R	packages	

library(MASS)	
#install.packages('corrplot')	
library(corrplot)	
library(ggplot2)	

We	use	the	Boston	dataset	that	is	a	part	of	the	MASS	R	package.	Let's	start	by	examining	the	
dataset:	

str(Boston)	

## 'data.frame':    506 obs. of  14 variables:	
##  $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.06905 ...	
##  $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...	
##  $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...	
##  $ chas   : int  0 0 0 0 0 0 0 0 0 0 ...	
##  $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 
0.524 ...	
##  $ rm     : num  6.58 6.42 7.18 7 7.15 ...	
##  $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...	
##  $ dis    : num  4.09 4.97 4.97 6.06 6.06 ...	
##  $ rad    : int  1 2 2 3 3 3 5 5 5 5 ...	
##  $ tax    : num  296 242 242 222 222 222 311 311 311 311 ...	
##  $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...	
##  $ black  : num  397 397 393 395 397 ...	
##  $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ...	
##  $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...	

We	will	seek	to	predict	medv	(median	house	value)	using	(some	of)	the	other	13	variables.	

To	find	out	more	about	the	data	set,	type	?Boston	

?Boston	

Let's	start	by	examining	which	of	the	13	predictors	might	be	relevant	for	predicting	the	
response	valiable	(medv).	One	way	to	do	that	is	to	examine	correlation	between	the	
predictors	and	the	response	variable.	

Since	we	have	many	variables,	examining	a	correlation	matrix	will	not	be	that	easy,	so,	it	is	
better	to	plot	the	correlations.	To	that	end,	we'll	use	the	corrplot	package.	To	explore	the	
plotting	options	offered	by	this	package,	check:	https://cran.r-
project.org/web/packages/corrplot/vignettes/corrplot-intro.html	



# compute the correlation matrix	
corr.matrix <- cor(Boston)	
# one option for plotting correlations: using colors to represent the extent 
of correlation	
corrplot(corr.matrix, method = "number", type = "upper", diag = FALSE, 	
         number.cex=0.75, tl.cex = 0.85)	

	

	

	

# another option, with both colors and exact correlation scores	
corrplot.mixed(corr.matrix, tl.cex=0.75, number.cex=0.75)	



		

Predictors	lstat	(percent	of	households	with	low	socioeconomic	status)	and	rm	(average	
number	of	rooms	per	house)	have	the	highest	correlation	with	the	outcome	variable.	

To	examine	this	further,	we	can	plot	lstat	and	rm	against	the	response	variable.	

p1 <- ggplot(data = Boston, mapping = aes(x = lstat, y = medv)) +	
  geom_point(shape = 1)	
p1	



	
 

p2 <- ggplot(data = Boston, mapping = aes(x = rm, y = medv)) +	
  geom_point(shape = 1)	
p2	

	



Simple	Linear	Regression	
Let's	start	by	building	a	simple	linear	regression	model,	with	medv	as	the	response	and	lstat	
as	the	predictor.	

lm1 <- lm(medv ~ lstat, data = Boston)	
summary(lm1)	

## 	
## Call:	
## lm(formula = medv ~ lstat, data = Boston)	
## 	
## Residuals:	
##     Min      1Q  Median      3Q     Max 	
## -15.168  -3.990  -1.318   2.034  24.500 	
## 	
## Coefficients:	
##             Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) 34.55384    0.56263   61.41   <2e-16 ***	
## lstat       -0.95005    0.03873  -24.53   <2e-16 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 6.216 on 504 degrees of freedom	
## Multiple R-squared:  0.5441, Adjusted R-squared:  0.5432 	
## F-statistic: 601.6 on 1 and 504 DF,  p-value: < 2.2e-16	

As	we	see,	the	summary()	function	gives	us:	

• p-values	and	standard	errors	for	the	coefficients,	
• R-squared	(R2)	statistic	
• F-statistic	for	the	model	

In	particular,	we	can	conclude	the	following:	

• based	on	the	coefficient	of	the	lstat	variable,	with	each	unit	increase	in	lstat,	that	is,	
with	a	percentage	increase	in	the	households	with	low	socioeconomic	status,	median	
house	value	decreases	by	0.95005	units.	

• based	on	the	R2	value,	this	model	explains	54.4%	of	variability	in	the	median	house	
value.	

• based	on	the	F	statistic	and	the	associated	p-value,	there	is	a	significant	linear	relation	
between	the	predictor	and	the	response	variable.	

To	find	out	what	other	pieces	of	information	are	stored	in	the	fitted	model	(that	is,	the	lm1	
object),	we	can	use	the	names()	f.	

names(lm1)	



##  [1] "coefficients"  "residuals"     "effects"       "rank"         	
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  	
##  [9] "xlevels"       "call"          "terms"         "model"	

So,	for	instance,	to	get	the	coefficients	of	the	model:	

lm1$coefficients	

## (Intercept)       lstat 	
##  34.5538409  -0.9500494	

Note,	there	is	also	the	coef()	f.	that	returns	the	coefficients:	

coef(lm1)	

## (Intercept)       lstat 	
##  34.5538409  -0.9500494	

Or,	if	we	want	to	compute	the	residual	sum	of	squares	(RSS):	

lm1_rss <- sum(lm1$residuals^2)	
lm1_rss	

## [1] 19472.38	

Recall	that	the	obtained	coefficent	values	are	just	estimates	(of	the	real	coefficient	values)	
obtained	using	one	particular	sample	from	the	target	population.	If	some	other	sample	was	
taken,	these	estimates	might	have	been	somewhat	different.	So,	we	usually	compute	the	95	
confidence	interval	for	the	coefficients	to	get	an	interval	of	values	within	which	we	can	
expect,	in	95%	of	cases	(i.e.	95%	of	examined	samples),	that	the	'true'	value	for	the	
coefficents	will	be.	

confint(lm1, level = 0.95)	

##                 2.5 %     97.5 %	
## (Intercept) 33.448457 35.6592247	
## lstat       -1.026148 -0.8739505	

Now	that	we	have	a	model,	we	can	predict	the	value	of	medv	based	on	the	given	lstat	values.	
To	do	that,	we	will	create	a	tiny	test	data	frame.	

df.test <- data.frame(lstat=c(5, 10, 15))	
predict(lm1, newdata = df.test)	

##        1        2        3 	
## 29.80359 25.05335 20.30310	

We	can	also	include	the	confidence	interval	for	the	predictions:	

predict(lm1, newdata = df.test, interval = "confidence")	

##        fit      lwr      upr	
## 1 29.80359 29.00741 30.59978	



## 2 25.05335 24.47413 25.63256	
## 3 20.30310 19.73159 20.87461	

Or,	we	can	examine	prediction	intervals:	

predict(lm1, newdata = df.test, interval = "predict")	

##        fit       lwr      upr	
## 1 29.80359 17.565675 42.04151	
## 2 25.05335 12.827626 37.27907	
## 3 20.30310  8.077742 32.52846	

Notice	the	difference	between	the	confidence	and	prediction	intervals	-	the	latter	are	much	
wider,	reflecting	far	more	uncertainty	in	the	predicted	value.	Hint:	recall	the	difference	
between	the	prediction	and	confidence	intervals.	

Now,	we	have	to	examine	how	well	our	model	'fits	the	data'.	To	do	that,	we	will	first	plot	the	
regression	line,	and	observe	how	well	the	regression	line	fits	the	data	

ggplot(data = Boston, mapping = aes(x = lstat, y = medv)) +	
  geom_point(shape = 1) +	
  geom_smooth(method = "lm")	

	

The	plot	indicates	that	there	is	some	non-linearity	in	the	relationship	between	lstat	and	
medv.	

Next,	we	will	use	diagnostic	plots	to	examine	the	model	fittness	in	more	detail.	Four	
diagnostic	plots	are	automatically	produced	by	passing	the	output	from	lm()	function	(e.g.	



lm1)	to	the	plot()	function.	This	will	produce	one	plot	at	a	time,	and	hitting	Enter	will	
generate	the	next	plot.	However,	it	is	often	convenient	to	view	all	four	plots	together.	We	
can	achieve	this	by	using	the	par()	function,	which	tells	R	to	split	the	display	screen	into	
separate	panels	so	that	multiple	plots	can	be	viewed	simultaneously.	

par(mfrow=c(2,2)) # splitting the plotting area into 4 cells	
plot(lm1)	

	
par(mfrow=c(1,1)) # reseting the plotting area	

Interpretation	of	the	plots:	

• the	1st	plot,	Residual	vs	Fitted	value,	is	used	for	checking	if	the	linearity	assumption	is	
satisfied.	The	plot	shows	that	there	is	some	indication	of	non-linear	relationship	
between	the	predictor	and	the	response	variable	

• the	2nd	plot,	Q-Q	plot,	tells	us	if	residuals	are	normally	distributed;	in	this	case	we	see	
a	considerable	deviation	from	the	diagonal,	and	therefore,	from	normal	distribution	

• the	3rd	plot	is	used	for	checking	the	assumption	of	equal	variance	of	residuals	
(homoscedasticity);	in	this	case,	the	variance	of	the	residuals	tends	to	differ,	so,	the	
assumption	is	not	fulfiled	

• the	4th	plot	is	used	for	spotting	the	presence	of	high	leverage	points;	those	would	be	
the	observations	that	have	unusually	high	value	of	the	predictor	variable(s);	their	



presence	can	seriously	affect	the	estimation	of	the	coefficients;	they	can	be	spotted	as	
being	outside	of	the	Cook’s	distance	(meaning	they	have	high	Cook’s	distance	scores);	
in	this	case	there	are	several	such	observations	

For	a	nice	explanation	of	the	diagnostic	plots,	check	this	article:	
http://data.library.virginia.edu/diagnostic-plots/	

If	we	want	to	examine	leverage	points	in	more	detail,	we	can	compute	the	leverage	statistic	
using	the	hatvalues()	function:	

lm1.leverage <- hatvalues(lm1)	
plot(lm1.leverage)	

		

	

The	plot	suggests	that	there	are	several	observations	with	high	leverage	values.	We	can	
check	this	further	by	examining	the	value	of	leverage	statistic	for	the	observations.	
Leverage	statistics	is	always	between	1/n	and	1	(n	is	the	number	of	observations);	
observations	with	leverage	statistic	considerably	above	2*(p+1)/n	(p	is	the	number	of	
predictors)	are	often	considered	as	high	leverage	points.	Let's	check	this	for	our	data:	

n <- nrow(Boston)	
p <- 1	
cutoff <- 2*(p+1)/n	
length(which(lm1.leverage > cutoff))	

## [1] 34	

The	results	confirm	that	there	are	several	(34)	high	leverage	points.	



Multiple	Linear	Regression	
Let's	now	extend	our	model	by	including	some	other	predictor	variables	that	have	high	
correlation	with	the	response	variable.	Based	on	the	correlation	plot,	we	can	include	rm	
(average	number	of	rooms	per	house)	and	ptratio	(pupil-teacher	ratio	by	town).	

Scatterplot	matrices	are	useful	for	examining	the	presence	of	linear	relationship	between	
several	pairs	of	variables	

pairs(~medv + lstat + rm + ptratio, data = Boston)	

		

Far	from	perfect	linear	relation,	but	let's	see	what	the	model	will	look	like.	

To	be	able	to	properly	test	our	model	(not	use	fictitious	data	points	as	we	did	in	the	case	of	
simple	linear	regression),	we	need	to	split	our	dataset	into:	

• training	data	that	will	be	used	to	build	a	model	
• test	data	to	be	used	to	evaluate	/	test	the	predictive	power	of	our	model.	

Typically,	80%	of	observations	are	used	for	training	and	the	rest	for	testing.	

When	splitting	the	dataset,	we	need	to	assure	that	observations	are	randomly	assigned	to	
the	training	and	testing	data	sets.	In	addition,	we	should	assure	that	the	outcome	variable	



has	the	same	distribution	in	the	train	and	test	sets.	This	can	be	easily	done	using	the	
createDataPartition()	f.	from	the	caret	package	

# install.packages('caret')	
library(caret)	

## Loading required package: lattice	

# assure the replicability of the results by setting the seed 	
set.seed(123)	
# generate indices of the observations to be selected for the training set	
train.indices <- createDataPartition(Boston$medv, p = 0.80, list = FALSE)	
# select observations at the positions defined by the train.indices vector	
train.boston <- Boston[train.indices,]	
# select observations at the positions that are NOT in the train.indices 
vector	
test.boston <- Boston[-train.indices,]	

Check	that	the	outcome	variable	(medv)	has	the	same	distribution	in	the	training	and	test	
sets	

summary(train.boston$medv)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##    5.00   16.95   21.20   22.74   25.00   50.00	

summary(test.boston$medv)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##    5.00   17.05   21.00   21.68   24.65   50.00	

Now,	build	a	model	using	the	training	data	set	

lm2 <- lm(medv ~ lstat + rm + ptratio, data = train.boston)	
summary(lm2)	

## 	
## Call:	
## lm(formula = medv ~ lstat + rm + ptratio, data = train.boston)	
## 	
## Residuals:	
##      Min       1Q   Median       3Q      Max 	
## -14.8219  -3.0757  -0.8036   1.7893  29.7479 	
## 	
## Coefficients:	
##             Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) 18.11824    4.33535   4.179 3.59e-05 ***	
## lstat       -0.56496    0.04778 -11.824  < 2e-16 ***	
## rm           4.62379    0.45996  10.053  < 2e-16 ***	
## ptratio     -0.94082    0.13192  -7.132 4.63e-12 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	



## 	
## Residual standard error: 5.181 on 403 degrees of freedom	
## Multiple R-squared:  0.6935, Adjusted R-squared:  0.6912 	
## F-statistic: 303.9 on 3 and 403 DF,  p-value: < 2.2e-16	

From	the	summary,	we	can	see	that:	

• R-squared	has	increased	considerably,	from	0.544	to	0.694	even	though	we	have	built	
it	with	a	smaller	dataset	(407	observations,	instead	of	506	observations).	

• all	3	predictors	are	highly	significant	

	

TASK	1:	Interpret	the	estimated	coefficients	(see	how	it	was	done	for	the	simple	linear	
regression).	

	

TASK	2:	use	diagnostic	plots	to	examine	how	well	the	model	adheres	to	the	assumptions.	

	

Let's	make	predictions	using	this	model	on	the	test	data	set	that	we	have	created	

lm2.predict <- predict(lm2, newdata = test.boston)	
head(lm2.predict)	

##        3        5       11       12       14       15 	
## 32.31678 30.55989 21.75026 24.10511 21.20138 20.75116	

To	examine	the	predicted	against	the	real	values	of	the	response	variable	(medv),	we	can	
plot	their	distributions	one	against	the	other	

test.boston.lm2 <- cbind(test.boston, pred = lm2.predict) 	
ggplot() + 	
  geom_density(data = test.boston.lm2, mapping = aes(x=medv, color = 'real')) 
+	
  geom_density(data = test.boston.lm2, mapping = aes(x=pred, color = 
'predicted')) +	
  scale_colour_discrete(name ="medv distribution")	



	

To	evalute	the	predictive	power	of	the	model,	we'll	compute	R-squared	on	the	test	data.	
Recall	that	R-squared	is	computed	as	1	-	RSS/TSS,	where	TSS	is	the	total	sum	of	squares	

lm2.test.RSS <- sum((lm2.predict - test.boston$medv)^2)	
lm.test.TSS <- sum((mean(train.boston$medv) - test.boston$medv)^2)	
lm2.test.R2 <- 1 - lm2.test.RSS/lm.test.TSS	
lm2.test.R2	

## [1] 0.6076704	

R2	on	the	test	is	lower	than	the	one	obtained	on	the	training	set,	which	is	expected.	

Let's	also	compute	Root	Mean	Squared	Error	(RMSE)	to	see	how	much	error	we	are	making	
with	the	predictions.	Recall:	RMSE	=	sqrt(RSS/n)	

lm2.test.RMSE <- sqrt(lm2.test.RSS/nrow(test.boston))	
lm2.test.RMSE	

## [1] 5.432056	

To	get	a	perspective	of	how	large	this	error	is,	let's	check	the	mean	value	of	the	response	
variable	on	the	test	set:	

mean(test.boston$medv)	



## [1] 21.68384	

lm2.test.RMSE/mean(test.boston$medv)	

## [1] 0.2505117	

So,	it's	not	a	small	error,	it's	about	25%	of	the	mean	value	

Let's	now	build	another	model	using	all	available	predictors:	

lm3 <- lm(medv ~ ., data = train.boston) # note the use of '.' to mean all 
variables	
summary(lm3)	

## 	
## Call:	
## lm(formula = medv ~ ., data = train.boston)	
## 	
## Residuals:	
##      Min       1Q   Median       3Q      Max 	
## -15.1772  -2.6987  -0.5194   1.7225  26.0486 	
## 	
## Coefficients:	
##               Estimate Std. Error t value Pr(>|t|)    	
## (Intercept)  3.759e+01  5.609e+00   6.702 7.17e-11 ***	
## crim        -9.610e-02  4.024e-02  -2.388  0.01741 *  	
## zn           4.993e-02  1.521e-02   3.283  0.00112 ** 	
## indus       -5.789e-03  6.745e-02  -0.086  0.93166    	
## chas         2.292e+00  1.019e+00   2.250  0.02501 *  	
## nox         -1.723e+01  4.244e+00  -4.059 5.95e-05 ***	
## rm           3.784e+00  4.537e-01   8.341 1.26e-15 ***	
## age          8.387e-04  1.450e-02   0.058  0.95391    	
## dis         -1.620e+00  2.217e-01  -7.310 1.50e-12 ***	
## rad          3.031e-01  7.434e-02   4.078 5.51e-05 ***	
## tax         -1.316e-02  4.144e-03  -3.176  0.00161 ** 	
## ptratio     -9.582e-01  1.473e-01  -6.505 2.37e-10 ***	
## black        9.723e-03  2.993e-03   3.249  0.00126 ** 	
## lstat       -5.297e-01  5.691e-02  -9.308  < 2e-16 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 4.692 on 393 degrees of freedom	
## Multiple R-squared:  0.7549, Adjusted R-squared:  0.7468 	
## F-statistic:  93.1 on 13 and 393 DF,  p-value: < 2.2e-16	

Note	that	even	though	we	now	have	13	predictors,	we	haven't	much	improved	the	R-
squared	value:	in	the	model	with	3	predictors,	it	was	0.693	and	now	it	is	0.755.	In	addition,	
it	should	be	recalled	that	R2	increases	with	the	increase	in	the	number	of	predictors,	no	
matter	how	good/useful	they	are.	



The	3	predictors	from	the	previous	model	are	still	highly	significant,	plus,	there	are	a	
number	of	other	significant	variables.	

Let's	do	the	prediction	using	the	new	model:	

lm3.predict <- predict(lm3, newdata = test.boston)	
head(lm3.predict)	

##        3        5       11       12       14       15 	
## 30.70615 28.05079 18.88585 21.53429 19.68122 19.43022	

Plot	the	distribution	of	predictions	against	the	real	values	of	the	response	variable	(medv)	

test.boston.lm3 <- cbind(test.boston, pred = lm3.predict) 	
ggplot() + 	
  geom_density(data = test.boston.lm3, mapping = aes(x=medv, color = 'real')) 
+	
  geom_density(data = test.boston.lm3, mapping = aes(x=pred, color = 
'predicted')) +	
  scale_colour_discrete(name ="medv distribution")	

	

As	before,	we'll	compute	R-squared	on	the	test	data:	



lm3.test.RSS <- sum((lm3.predict - test.boston$medv)^2)	
lm3.test.R2 <- 1 - lm3.test.RSS/lm.test.TSS	
lm3.test.R2	

## [1] 0.6685588	

Again,	we	got	lower	R2	than	on	the	train	set.	

We	can	also	compute	RMSE:	

lm3.test.RMSE <- sqrt(lm3.test.RSS/nrow(test.boston))	
lm3.test.RMSE	

## [1] 4.992775	

It	is	lower	(therefore,	better)	than	with	the	previous	model.	

	

TASK:	use	diagnostic	plots	to	examine	how	well	the	model	adheres	to	the	assumptions.	

	

Considering	the	number	of	variables	in	the	model,	we	should	check	for	multicolinearity.	To	
do	that,	we'll	compute	the	variance	inflation	factor	(VIF):	

library(car)	
vif(lm3)	

##     crim       zn    indus     chas      nox       rm      age      dis 	
## 1.865531 2.364859 3.901322 1.064429 4.471619 2.010665 3.018555 3.961686 	
##      rad      tax  ptratio    black    lstat 	
## 7.799919 9.163102 1.907071 1.311933 2.967784	

As	a	rule	of	thumb,	variables	having	sqrt(vif)	>	2	are	problematic	

sqrt(vif(lm3))	

##     crim       zn    indus     chas      nox       rm      age      dis 	
## 1.365844 1.537810 1.975177 1.031712 2.114620 1.417979 1.737399 1.990398 	
##      rad      tax  ptratio    black    lstat 	
## 2.792833 3.027062 1.380967 1.145396 1.722726	

So,	tax	and	rad	exhibit	multicolinearity	-	if	we	go	back	to	the	correlation	plot,	we'll	see	that	
they	are,	indeed,	highly	correlated	(0.91).	There	are	also	a	few	suspicious	variables:	indus,	
nox,	and	dis.	

	

TASK:	create	a	new	model	(lm4)	by	excluding	either	tax	or	rad	variable.	Compare	the	new	
model	with	lm3.	


