
Data	preparation	and	feature	engineering	on	Titanic	data	set		
	

For	this	Lab,	we	will	use	the	Titanic	data	set,	available	from	Kaggle.com:	
http://www.kaggle.com/c/titanic-gettingStarted/data	

Load	the	data	(training	and	test	sets)	

titanic.train <- read.csv("data/titanic/train.csv", stringsAsFactors = F)	
titanic.test <- read.csv("data/titanic/test.csv", stringsAsFactors = F)	

Let’s	start	by	examining	the	structure	of	the	data	sets	Note:	description	of	all	the	varibles	is	
available	at	the	Kaggle	website	

str(titanic.train)	

## 'data.frame':    891 obs. of  12 variables:	
##  $ PassengerId: int  1 2 3 4 5 6 7 8 9 10 ...	
##  $ Survived   : int  0 1 1 1 0 0 0 0 1 1 ...	
##  $ Pclass     : int  3 1 3 1 3 3 1 3 3 2 ...	
##  $ Name       : chr  "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley 
(Florence Briggs Thayer)" "Heikkinen, Miss. Laina" "Futrelle, Mrs. Jacques 
Heath (Lily May Peel)" ...	
##  $ Sex        : chr  "male" "female" "female" "female" ...	
##  $ Age        : num  22 38 26 35 35 NA 54 2 27 14 ...	
##  $ SibSp      : int  1 1 0 1 0 0 0 3 0 1 ...	
##  $ Parch      : int  0 0 0 0 0 0 0 1 2 0 ...	
##  $ Ticket     : chr  "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" 
...	
##  $ Fare       : num  7.25 71.28 7.92 53.1 8.05 ...	
##  $ Cabin      : chr  "" "C85" "" "C123" ...	
##  $ Embarked   : chr  "S" "C" "S" "S" ...	

str(titanic.test)	

## 'data.frame':    418 obs. of  11 variables:	
##  $ PassengerId: int  892 893 894 895 896 897 898 899 900 901 ...	
##  $ Pclass     : int  3 3 2 3 3 3 3 2 3 3 ...	
##  $ Name       : chr  "Kelly, Mr. James" "Wilkes, Mrs. James (Ellen Needs)" 
"Myles, Mr. Thomas Francis" "Wirz, Mr. Albert" ...	
##  $ Sex        : chr  "male" "female" "male" "male" ...	
##  $ Age        : num  34.5 47 62 27 22 14 30 26 18 21 ...	
##  $ SibSp      : int  0 1 0 0 1 0 0 1 0 2 ...	
##  $ Parch      : int  0 0 0 0 1 0 0 1 0 0 ...	
##  $ Ticket     : chr  "330911" "363272" "240276" "315154" ...	
##  $ Fare       : num  7.83 7 9.69 8.66 12.29 ...	
##  $ Cabin      : chr  "" "" "" "" ...	
##  $ Embarked   : chr  "Q" "S" "Q" "S" ...	



The	structure	of	the	training	and	test	sets	is	almost	exactly	the	same	(as	expected).	In	fact,	
the	only	difference	is	the	Survived	column	that	is	present	in	the	training,	but	absent	in	the	
test	set	-	it	is	the	response	(outcome)	variable,	that	is,	the	variable	with	the	class	values.	

Detecting	missing	values	

Let’s	start	by	checking	if	the	data	is	complete,	that	is,	if	there	are	some	missing	values.	One	
way	to	do	that	is	through	the	summary	f.	which	will	let	us	know	if	a	variable	has	NA	values	

summary(titanic.train)	

##   PassengerId       Survived          Pclass          Name          	
##  Min.   :  1.0   Min.   :0.0000   Min.   :1.000   Length:891        	
##  1st Qu.:223.5   1st Qu.:0.0000   1st Qu.:2.000   Class :character  	
##  Median :446.0   Median :0.0000   Median :3.000   Mode  :character  	
##  Mean   :446.0   Mean   :0.3838   Mean   :2.309                     	
##  3rd Qu.:668.5   3rd Qu.:1.0000   3rd Qu.:3.000                     	
##  Max.   :891.0   Max.   :1.0000   Max.   :3.000                     	
##                                                                     	
##      Sex                 Age            SibSp           Parch       	
##  Length:891         Min.   : 0.42   Min.   :0.000   Min.   :0.0000  	
##  Class :character   1st Qu.:20.12   1st Qu.:0.000   1st Qu.:0.0000  	
##  Mode  :character   Median :28.00   Median :0.000   Median :0.0000  	
##                     Mean   :29.70   Mean   :0.523   Mean   :0.3816  	
##                     3rd Qu.:38.00   3rd Qu.:1.000   3rd Qu.:0.0000  	
##                     Max.   :80.00   Max.   :8.000   Max.   :6.0000  	
##                     NA's   :177                                     	
##     Ticket               Fare           Cabin             Embarked        	
##  Length:891         Min.   :  0.00   Length:891         Length:891        	
##  Class :character   1st Qu.:  7.91   Class :character   Class :character  	
##  Mode  :character   Median : 14.45   Mode  :character   Mode  :character  	
##                     Mean   : 32.20                                        	
##                     3rd Qu.: 31.00                                        	
##                     Max.   :512.33                                        	
## 	

It	seems	that	in	the	training	set	only	Age	has	missing	values,	and	quite	a	number	of	them	
(177).	

summary(titanic.test)	

##   PassengerId         Pclass          Name               Sex           	
##  Min.   : 892.0   Min.   :1.000   Length:418         Length:418        	
##  1st Qu.: 996.2   1st Qu.:1.000   Class :character   Class :character  	
##  Median :1100.5   Median :3.000   Mode  :character   Mode  :character  	
##  Mean   :1100.5   Mean   :2.266                                        	
##  3rd Qu.:1204.8   3rd Qu.:3.000                                        	
##  Max.   :1309.0   Max.   :3.000                                        	
##                                                                        	
##       Age            SibSp            Parch           Ticket         	
##  Min.   : 0.17   Min.   :0.0000   Min.   :0.0000   Length:418        	



##  1st Qu.:21.00   1st Qu.:0.0000   1st Qu.:0.0000   Class :character  	
##  Median :27.00   Median :0.0000   Median :0.0000   Mode  :character  	
##  Mean   :30.27   Mean   :0.4474   Mean   :0.3923                     	
##  3rd Qu.:39.00   3rd Qu.:1.0000   3rd Qu.:0.0000                     	
##  Max.   :76.00   Max.   :8.0000   Max.   :9.0000                     	
##  NA's   :86                                                          	
##       Fare            Cabin             Embarked        	
##  Min.   :  0.000   Length:418         Length:418        	
##  1st Qu.:  7.896   Class :character   Class :character  	
##  Median : 14.454   Mode  :character   Mode  :character  	
##  Mean   : 35.627                                        	
##  3rd Qu.: 31.500                                        	
##  Max.   :512.329                                        	
##  NA's   :1	

In	the	test	set,	in	addition	to	the	86	NAs	for	Age,	there	is	also	one	missing	value	for	the	Fare	
variable.	

So,	based	on	the	NA	values,	it	seems	that	only	Age	variable	has	a	serious	issue	with	missing	
values.	

However,	if	you	take	a	closer	look	at	the	output	of	the	str()	f.,	you’ll	notice	that	for	some	
observations	(passengers)	the	value	for	Cabin	seems	to	be	missing,	that	is,	Cabin	value	is	
equal	to	empty	string	(“”).	Let’s	inspect	this	more	closely	by	checking	how	many	“”	values	
we	have	for	the	Cabin	variable	in	both	datasets:	

length(which(titanic.train$Cabin==""))	

## [1] 687	

length(which(titanic.test$Cabin==""))	

## [1] 327	

So,	for	687	passengers	in	the	training	set	and	327	passanges	in	the	test,	we	have	“”	as	the	
Cabin	value.	Should	we	consider	these	as	missing	values?	

Recall	that	on	Titanic,	there	were	three	classes	of	passengers,	and	only	those	from	the	1st	
class	were	offered	a	cabin.	So,	some	of	the	empty	string	values	we	have	observed	are	due	to	
the	fact	that	passengers	were	from	the	2nd	or	the	3rd	class,	meaning	that	they	really	didn’t	
have	a	cabin.	In	those	cases	empty	string	is	not	a	missing	value,	but	“not	applicable”	value.	
However,	passengers	from	the	1st	class	should	have	had	a	cabin;	so,	an	empty	string	for	the	
Cabin	value	of	a	1st	class	passenger	is	a	‘real’	missing	value.	Let’s	check	how	many	such	
values	we	have	in	the	training	set:	

train.class1.no.cabin <- which(titanic.train$Pclass==1 & 
titanic.train$Cabin=="")	
length(train.class1.no.cabin)	

## [1] 40	



Also,	on	the	test	set:	

test.class1.no.cabin <- which(titanic.test$Pclass==1 & 
titanic.test$Cabin=="")	
length(test.class1.no.cabin)	

## [1] 27	

So,	for	40	1st	class	passengers	in	the	training	set	and	27	1st	class	passengers	in	the	test	set,	
the	Cabin	value	is	missing.	To	make	this	explicit,	let’s	replace	the	missing	Cabin	values	for	
1st	class	passengers	with	NAs:	

titanic.train$Cabin[train.class1.no.cabin] <- NA	
titanic.test$Cabin[test.class1.no.cabin] <- NA	

We	can	check	the	results	of	this	transformation:	

length(which(is.na(titanic.train$Cabin)))	

## [1] 40	

length(which(is.na(titanic.test$Cabin)))	

## [1] 27	

Note	that	we	have	discovered	missing	values	of	the	Cabin	variable	by	spotting	a	few	empty	
strings	in	the	output	of	the	str()	f.	However,	if	those	values	were	not	amongst	the	first	
couple	of	values	listed	by	str(),	they	would	have	passed	unnoticed.	So,	let’s	check	other	
string	variables	for	missing	values	‘hidden’	as	empty	strings:	

apply(X = titanic.train[,c("Name","Sex","Ticket","Embarked")],	
      MARGIN = 2,	
      FUN = function(x) length(which(x=="")))	

##     Name      Sex   Ticket Embarked 	
##        0        0        0        2	

In	the	training	set,	only	for	the	Embarked	variable,	we	have	2	missing	values.	

apply(X = titanic.test[,c("Name","Sex","Ticket","Embarked")],	
      MARGIN = 2,	
      FUN = function(x) length(which(x=="")))	

##     Name      Sex   Ticket Embarked 	
##        0        0        0        0	

In	the	test	set,	none	of	the	examined	variables	has	missing	values.	

We’ll	set	the	two	missing	values	of	Embarked	to	NA,	as	we	did	with	the	Cabin.	

titanic.train$Embarked[titanic.train$Embarked==""] <- NA	



We	have	now	examined	all	the	variables	for	the	missing	values.	Before	proceeding	with	
‘fixing’	the	missing	values,	let’s	see	how	we	can	make	use	of	visualizations	to	more	easily	
spot	missing	values.	

An	easy	way	to	get	a	high	level	view	on	the	data	completeness	is	to	visualize	the	data	using	
some	functions	from	the	Amelia	R	package	

#install.packages('Amelia')	
library(Amelia)	

## Warning: package 'Rcpp' was built under R version 3.4.3	

We	will	use	the	missmap()	f.	to	plot	the	missing	data	from	the	traning	and	test	sets	

par(mfrow=c(1,2)) # structure the display area to show two plots in the same 
row 	
missmap(obj = titanic.train, main = "Training set", legend = FALSE)	
missmap(obj = titanic.test, main = "Test set", legend = FALSE)	

	
par(mfrow=c(1,1)) # reverting plotting area to the default (one plot per row)	

Note:	the	detection	of	missing	values	in	the	missmap()	f.	is	based	on	the	NA	values;	so,	if	we	
hadn’t	transformed	those	empty	strings	(for	Cabin	and	Embarked)	into	NAs,	they	wouldn’t	
be	visualized	as	missing.	



Handling	missing	values	

Let’s	now	see	how	to	deal	with	missing	values.	We’ll	start	with	those	cases	that	are	easier	to	
deal	with,	that	is,	variables	where	we	have	just	a	few	missing	values.	

Categorical	variables	with	a	small	number	of	missing	values	

In	our	datasets,	Embarked	variables	falls	into	this	category:	

unique(titanic.train$Embarked)	

## [1] "S" "C" "Q" NA	

unique(titanic.test$Embarked)	

## [1] "Q" "S" "C"	

So,	as	we	see,	Embarked	is	essentially	a	nominal	(categorical)	variable	with	3	possible	
values	(‘S’,	‘C’,	and	‘Q’).	And,	we	have	seen	that	it	has	2	missing	values	(in	the	train	set).	

In	a	situation	like	this,	the	missing	values	are	replaced	by	the	‘majority	class’,	that	is,	the	
most	dominant	value	

xtabs(~Embarked, data = titanic.train)	

## Embarked	
##   C   Q   S 	
## 168  77 644	

So,	“S”	is	the	dominant	value,	and	it	will	be	used	as	a	replacement	for	NAs	

titanic.train$Embarked[is.na(titanic.train$Embarked)] <- 'S'	
xtabs(~Embarked, data = titanic.train)	

## Embarked	
##   C   Q   S 	
## 168  77 646	

Let’s	also	make	Embarked	a	‘true’	categorical	variable	by	transforming	it	into	a	factor	
variable:	

titanic.train$Embarked <- factor(titanic.train$Embarked)	
titanic.test$Embarked <- factor(titanic.test$Embarked)	

Numerical	variables	with	a	small	number	of	missing	values	

In	our	data	set,	Fare	variable	belongs	to	this	category	-	it	is	a	numerical	variable	with	1	
missing	value	(in	the	test	set)	

A	typical	way	to	deal	with	missing	values	in	situations	like	this	is	to	replace	them	with	the	
average	value	of	the	variable	on	a	subset	of	observations	that	are	the	closest	(most	similar)	
to	the	observation(s)	with	the	missing	value.	One	way	to	do	this	is	to	apply	the	kNN	



method.	However,	we	can	opt	for	a	simpler	approach:	we	will	replace	the	missing	Fare	
value	with	the	average	Fare	value	for	the	passengers	of	the	same	class	(Pclass).	

First,	we	need	to	check	the	distribution	of	the	Fare	variable,	to	decide	if	we	should	use	mean	
or	median	as	the	average	value	

shapiro.test(titanic.test$Fare)	

## 	
##  Shapiro-Wilk normality test	
## 	
## data:  titanic.test$Fare	
## W = 0.5393, p-value < 2.2e-16	

The	variable	is	not	normaly	distributed	->	use	median	

Now,	identify	the	passenger	class	(Pclass)	of	the	passenger	whose	Fare	is	missing	

missing.fare.pclass <- titanic.test$Pclass[is.na(titanic.test$Fare)]	

Compute	median	Fare	for	the	other	passengers	of	the	same	class	

median.fare <- median(x = titanic.test$Fare[titanic.test$Pclass == 
missing.fare.pclass], 	
                      na.rm = T) # we have to set this to true as Fare has 
one NA value	

Set	the	missing	Fare	value	to	the	computed	median	value	

titanic.test$Fare[is.na(titanic.test$Fare)] <- median.fare	

Check	if	the	NA	value	was	really	replaced	

summary(titanic.test$Fare)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##   0.000   7.896  14.454  35.561  31.472 512.329	

Variables	with	many	missing	values	and/or	missing	values	that	are	difficult	to	replace	

The	Age	variable	is	an	example	of	the	first	type:	variable	with	many	missing	value;	Cabin	is	
an	example	of	the	second	type,	as	it	is	a	categorical	variable	with	many	different	values	
(~150)	

For	such	variables	we	apply	the	process	known	as	imputation	-	the	process	of	replacing	
missing	values	with	substituted	(predicted)	values.	It	is,	in	fact,	the	task	of	predicting	(good	
substitutes	for)	the	missing	values.	R	has	several	packages	for	imputation:	MICE,	Amelia,	
HMisc,…	

We	are	not	going	to	do	imputation	(out	of	scope	of	this	course),	but	will	instead	create	new	
variables	(features)	that	will,	in	a	way,	serve	as	substitutes	or	proxies	for	Age	and	Cabin.	



Feature	selection	

To	select	features	to	be	used	for	creating	a	prediction	model,	we	have	to	examine	if	and	to	
what	extent	they	are	associated	with	the	response	(outcome)	variable.	

If	we	are	familiar	with	the	domain	of	the	problem	(prediction	task),	we	can	start	from	the	
knowledge	and/or	intuition	about	the	predictors.	Otherwise,	that	is,	if	the	domain	is	
unknown	to	us	(such	as	would	be	prediction	of	the	outcome	of	some	chemical	reactions)	or	
the	real	names	(labels)	of	the	variables	are	withdrawn	(e.g.	for	privacy	reasons),	we	have	to	
rely	on	some	well	establish	general	methods	for	feature	selection	(such	as	forward	or	
backward	selection).	

Since	the	Titanic	data	set	is	associated	with	a	familiar	domain,	we	can	start	from	some	
intuition	about	potential	predictors.	

Examining	the	predictive	power	of	variables	from	the	data	set	

It’s	well-known	that	in	disasters	woman	and	children	are	often	the	first	to	be	rescued.	Let’s	
check	if	that	was	the	case	in	the	Titanic	disaster.	

We’ll	start	by	looking	at	the	survival	based	on	the	gender.	First,	let’s	see	the	proportion	of	
males	and	females	in	the	dataset	

titanic.train$Sex <- factor(titanic.train$Sex)	
summary( titanic.train$Sex )	

## female   male 	
##    314    577	

prop.table(summary( titanic.train$Sex ))	

##   female     male 	
## 0.352413 0.647587	

Now,	examine	the	survival	counts	based	on	the	gender	

xtabs(~Sex + Survived, data = titanic.train)	

##         Survived	
## Sex        0   1	
##   female  81 233	
##   male   468 109	

and	the	proportions	

sex.surv.tbl <- prop.table(xtabs(~Sex + Survived, 	
                                 data = titanic.train), 	
                           margin = 1) # proportions are computed at the row 
level (each row sums to 1)	
sex.surv.tbl	



##         Survived	
## Sex              0         1	
##   female 0.2579618 0.7420382	
##   male   0.8110919 0.1889081	

Obviously,	gender	is	highly	associated	with	the	survival.	

Before	inspecting	if/how	age	group	has	affected	the	chances	for	survival,	let’s	quickly	take	a	
look	at	the	potential	impact	of	the	passenger	class	(1st,	2nd	or	3rd),	as	it	is	reasonable	to	
expect	that	those	from	a	higher	class	would	have	had	higher	chances	of	survival.	We	can	do	
that	again	using	tables,	but	it	might	be	more	effective	to	examine	it	visually,	using	the	
ggplot2	package:	

library(ggplot2)	

For	plotting	the	survival	against	the	passenger	class,	we	need	to	transform	both	variables	
into	factor	variables	(they	are	given	as	variables	of	type	int)	

titanic.train$Survived <- factor(titanic.train$Survived, 	
                                 levels = c(0,1), labels = c('No','Yes'))	
	
titanic.train$Pclass <- factor(titanic.train$Pclass, 	
                               levels = c(1,2,3),	
                               labels = c("1st", "2nd", "3rd"))	

gp1 <- ggplot(data = titanic.train, 	
              mapping = aes(x = Pclass, fill=Survived)) +	
        geom_bar(position = "dodge", width = 0.4) +	
        ylab("Number of passengers") + xlab("Passenger class") +	
        theme_bw()	
gp1	



	

The	chart	suggests	that	passenger	class	is	another	relevant	predictor.	

Let’s	examine	passenger	class	and	gender	together	

gp2 <- gp1 + facet_wrap(~Sex)	
gp2	



	

Let’s	also	inspect	if	the	place	of	embarkment	(the	Embarked	variable)	affected	the	survival	

gp3 <- ggplot(data = titanic.train, 	
              mapping = aes(x = Embarked, fill = Survived)) +	
        geom_bar(position = "dodge", width = 0.45) +	
        ylab("Number of passengers") + xlab("Place of embarkment") +	
        theme_bw()	
gp3	



	

It	seems	that	those	who	embarked	in	Cherbourg	had	higher	chance	of	surviving	than	the	
passengers	who	embarked	in	the	other	two	ports.	Though	not	as	strong	as	Sex	and	Pclass,	
this	variable	seems	to	be	a	viable	candidate	for	a	predictor.	

Feature	engineering	

When	creating	new	features	(attributes)	to	be	used	for	prediction	purposes,	we	need	to	
base	those	features	on	the	data	from	both	the	training	and	the	test	sets,	so	that	the	features	
are	available	both	for	training	the	prediction	model,	and	making	predictions	on	the	unseen	
test	data.	

Hence,	we	should	merge	the	training	and	the	test	sets	and	develop	new	features	on	the	
merged	data.	But	before	we	do	that,	we	need	to	assure	that	the	training	and	the	test	sets	
have	exactly	the	same	structure.	To	that	end,	we	will	first	add	the	Survived	column	to	the	
test	data,	as	a	factor	variable	with	the	same	levels	as	in	the	training	set:	

titanic.test$Survived <- factor(NA, levels = levels(titanic.train$Survived))	

Next,	we	need	to	transform	the	Pclass,	Sex,	and	Embarked	variables	in	the	test	set	into	
factors,	since	we’ve	done	that	in	the	training	set	(the	structure	should	be	exactly	the	same)	

titanic.test$Pclass <- factor(x = titanic.test$Pclass,	
                             levels = c(1,2,3),	
                             labels = levels(titanic.train$Pclass))	
titanic.test$Sex <- factor(x = titanic.test$Sex,	
                        levels = c("female", "male"),	



                        labels = levels(titanic.train$Sex))	
titanic.test$Embarked <- factor(x = titanic.test$Embarked,	
                                levels = c("S", "C", "Q"),	
                                labels = levels(titanic.test$Embarked))	

Make	the	order	of	the	columns	in	the	test	set	the	same	as	in	the	train	set:	

titanic.test <- titanic.test[,names(titanic.train)]	

Now,	we	can	merge	the	two	datasets	

titanic.all <- rbind(titanic.train, titanic.test)	

Creating	an	age	proxy	variable	

Recall	that	the	Age	variable	has	a	lot	of	missing	values,	and	simple	imputation	methods	we	
considered	cannot	be	used	in	such	cases.	So,	we	will	create	a	new	variable	that	
approximates	the	passengers’	age	group.	We’ll	do	that	by	making	use	of	the	Name	variable.	

To	start,	let’s	first	inspect	the	values	of	this	variable	

titanic.all$Name[1:10]	

##  [1] "Braund, Mr. Owen Harris"                            	
##  [2] "Cumings, Mrs. John Bradley (Florence Briggs Thayer)"	
##  [3] "Heikkinen, Miss. Laina"                             	
##  [4] "Futrelle, Mrs. Jacques Heath (Lily May Peel)"       	
##  [5] "Allen, Mr. William Henry"                           	
##  [6] "Moran, Mr. James"                                   	
##  [7] "McCarthy, Mr. Timothy J"                            	
##  [8] "Palsson, Master. Gosta Leonard"                     	
##  [9] "Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)"  	
## [10] "Nasser, Mrs. Nicholas (Adele Achem)"	

We	can	observe	that	the	Name	variable	consists	of	surname,	title,	first	name,	and	in	some	
cases	additional	name	(maiden	name	of	married	woman).	

The	idea	is	to	use	the	title	of	a	person	as	a	rough	proxy	for	his/her	age.	

First,	we	need	to	extract	title	from	the	Name	variable;	to	that	end,	we’ll	split	the	Name	
string	using	“,”	or	“.”	as	delimiters;	lets’	try	it	first:	

strsplit(x = titanic.all$Name[1], split = "[,|.]")	

## [[1]]	
## [1] "Braund"       " Mr"          " Owen Harris"	

We	get	a	list	of	vectors,	where	each	vector	consists	of	pieces	of	a	person’s	name.	To	extract	
the	title,	we	need	to	simplify	the	output,	so	that	instead	of	a	list,	we	get	a	vector	(with	the	
elements	of	a	person’s	name)	

unlist(strsplit(x = titanic.all$Name[1], split = "[,|.]"))	



## [1] "Braund"       " Mr"          " Owen Harris"	

and	then,	take	the	second	element	of	that	vector:	

unlist(strsplit(x = titanic.all$Name[1], split = "[,|.]"))[2]	

## [1] " Mr"	

You	might	have	noticed	a	space	before	the	title,	we’ll	remove	that	quickly,	but	before	that,	
we’ll	apply	this	procedure	to	all	the	rows	in	the	titanic.all	dataset	to	create	a	new	feature:	

titanic.all$Title <- sapply(titanic.all$Name, 	
                            FUN = function(x) unlist(strsplit(x, split = 
"[,|.]"))[2] )	

Now,	let’s	remove	that	leading	blank	space	

titanic.all$Title <- trimws(titanic.all$Title, which = "left")	

Note:	if	trimws()	f.	is	not	working	on	your	computer,	use	str_trim()	f.	from	the	stringr	R	
package.	

We	can	now	inspect	different	kinds	of	titles	we	have	in	the	dataset	

table(titanic.all$Title)	

## 	
##         Capt          Col          Don         Dona           Dr 	
##            1            4            1            1            8 	
##     Jonkheer         Lady        Major       Master         Miss 	
##            1            1            2           61          260 	
##         Mlle          Mme           Mr          Mrs           Ms 	
##            2            1          757          197            2 	
##          Rev          Sir the Countess 	
##            8            1            1	

There	are	some	rarely	occuring	titles	that	won’t	be	much	usefull	for	creating	a	model;	so,	
we’ll	aggregate	those	titles	into	broader	categories	that	represent	some	basic	age-gender	
groups:	

adult.women <- c("Dona", "Lady", "Mme", "Mrs", "the Countess")	
girls <- c("Ms", "Mlle", "Miss")	
adult.men <- c("Capt", "Col", "Don", "Dr", "Major", "Mr", "Rev", "Sir")	
boys <- c("Master", "Jonkheer")	

First,	we’ll	introduce	a	new	variable	(feature)	to	represent	the	age-gender	group	

titanic.all$AgeGender <- vector(mode = "character", length = 
nrow(titanic.all))	

and,	now	define	each	age-gender	group	using	the	Title	groupings	we	defined	above	



titanic.all$AgeGender[ titanic.all$Title %in% adult.women ] <- "AdultWomen"	
titanic.all$AgeGender[ titanic.all$Title %in% adult.men ] <- "AdultMen" 	
titanic.all$AgeGender[ titanic.all$Title %in% girls ] <- "Girls" 	
titanic.all$AgeGender[ titanic.all$Title %in% boys ] <- "Boys" 	

Note:	the	%in%	operator	checks	to	see	if	a	value	is	an	element	of	the	given	vector	

Let’s	see	how	passengers	are	distributed	across	our	age-gender	groups:	

table(titanic.all$AgeGender)	

## 	
##   AdultMen AdultWomen       Boys      Girls 	
##        782        201         62        264	

We	observe	a	high	disproportion	in	the	number	of	boys	and	girls,	and	man	and	woman.	
Let’s	take	a	closer	look	at	the	groups	with	unexpectedly	high	number	of	passengers,	namely	
Girls	and	AdultMen	groups.	

We’ll	make	use	of	the	available	values	of	the	Age	variable	to	see	how	our	Girls	group	is	
distributed	with	respect	age.	

ggplot(data = titanic.all[titanic.all$AgeGender=="Girls",], 	
       mapping = aes(x = Age)) + 	
  geom_density() + 	
  theme_bw()	

## Warning: Removed 51 rows containing non-finite values (stat_density).	

	



It	is	obvious	from	the	graph	that	the	Girls	group	includes	a	considerable	number	of	adult	
women.	We’ll	need	to	fix	this.	But	before	that,	let’s	also	inspect	the	AdultMen	group.	

ggplot(data = titanic.all[titanic.all$AgeGender=="AdultMen", ], 	
       mapping = aes(x = Age)) + 	
  geom_density() + 	
  scale_x_continuous(breaks = seq(5,80,5)) +	
  theme_bw()	

## Warning: Removed 177 rows containing non-finite values (stat_density).	

	

From	this	plot	we	can	see	that	the	AdultMen	group	also	includes	some	males	who	cannot	be	
qualified	as	adults.	

We	will	try	to	fix	both	problems	using	the	available	values	of	the	Age	variable.	

First,	let’s	check	for	how	many	passengers	in	the	‘Girls’	group	the	Age	value	is	available:	

nrow(titanic.all[titanic.all$AgeGender=="Girls" & !is.na(titanic.all$Age),])	

## [1] 213	

So,	we	have	Age	value	for	213	out	of	264	Girls,	which	is	not	bad	at	all	(80%).	We’ll	make	use	
of	these	available	Age	values	to	move	some	Girls	to	AdultWomen	group,	using	18	years	of	
age	as	the	threshold:	



titanic.all$AgeGender[titanic.all$AgeGender=="Girls" & 	
                        !is.na(titanic.all$Age) & 	
                        titanic.all$Age >= 18] <- "AdultWomen"	

We’ll	do	a	similar	thing	for	the	AdultMen	group.	First,	check	the	number	of	AdultMen	
passengers	for	whom	age	is	available:	

nrow(titanic.all[titanic.all$AgeGender=="AdultMen" & 
!is.na(titanic.all$Age),])	

## [1] 605	

We	have	Age	value	for	605	out	of	782	AdultMen	passengers	(77%).	Let’s	make	use	of	those	
values	to	move	some	passengers	from	AdultMen	to	Boys	group	using,	again,	the	18	year	
threshold	

titanic.all$AgeGender[titanic.all$AgeGender=="AdultMen" & 	
                        !is.na(titanic.all$Age) & 	
                        titanic.all$Age < 18] <- "Boys"	

Let’s	check	the	AgeGender	proportions	after	these	modifications	

table(titanic.all$AgeGender)	

## 	
##   AdultMen AdultWomen       Boys      Girls 	
##        753        347         91        118	

round(prop.table(table(titanic.all$AgeGender)), digits = 2)	

## 	
##   AdultMen AdultWomen       Boys      Girls 	
##       0.58       0.27       0.07       0.09	

This	looks	far	more	realistic.	

Finally,	we’ll	transform	AgeGender	into	a	factor	variable,	so	that	it	can	be	better	used	for	
data	exploration	and	prediction	purposes	

titanic.all$AgeGender <- factor(titanic.all$AgeGender)	
summary(titanic.all$AgeGender)	

##   AdultMen AdultWomen       Boys      Girls 	
##        753        347         91        118	

Let’s	see	if	our	efforts	in	creating	the	AgeGender	variable	were	worthwhile,	that	is,	if	
AgeGender	is	likely	to	be	a	significant	predictor.	To	that	end,	we	will	plot	the	AgeGender	
groups	against	the	Survival	variable.	

ggplot(data = titanic.all[1:891,], 	
       mapping = aes(x = AgeGender, fill=Survived)) + 	
  geom_bar(position = "dodge") + 	
  theme_bw()	



		

Note:	we	are	using	only	the	first	891	observations	in	the	merged	dataset	as	these	are	
observations	from	the	training	set	for	which	we	know	the	outcome	(i.e.,	survival).	

Let’s	examine	this	also	as	percentages.	First,	we	need	to	compute	the	percentages	

age.gen.surv.tbl <- prop.table(table(AgeGender = 
titanic.all$AgeGender[1:891],	
                                     Survived = titanic.all$Survived[1:891]), 	
                               margin = 1)	
age.gen.surv.tbl	

##             Survived	
## AgeGender           No       Yes	
##   AdultMen   0.8349515 0.1650485	
##   AdultWomen 0.2212389 0.7787611	
##   Boys       0.6031746 0.3968254	
##   Girls      0.3563218 0.6436782	

Note	that	we	are	setting	the	margin	parameter	to	1	as	we	want	to	have	percentages	of	
survived	and	not-survived	(column	values)	computed	for	each	AgeGender	group	(row)	
individually.	Try	setting	margin	to	2	and	not	setting	it	at	all	to	observe	the	effect.	

For	plotting,	we’ll	transform	the	table	into	a	data	frame	

age.gen.surv.df <- as.data.frame(age.gen.surv.tbl)	
age.gen.surv.df	



##    AgeGender Survived      Freq	
## 1   AdultMen       No 0.8349515	
## 2 AdultWomen       No 0.2212389	
## 3       Boys       No 0.6031746	
## 4      Girls       No 0.3563218	
## 5   AdultMen      Yes 0.1650485	
## 6 AdultWomen      Yes 0.7787611	
## 7       Boys      Yes 0.3968254	
## 8      Girls      Yes 0.6436782	

Note	the	difference	in	the	structure	of	the	table	and	the	data	frame	

ggplot(data = age.gen.surv.df, 	
       mapping = aes(x = AgeGender, y = Freq, fill=Survived)) +	
  geom_col(position = "dodge", width = 0.5) + 	
  ylab("Proportion") +	
  theme_bw()	

	

Obviously,	the	age/gender	group	affects	survival.	

Creating	FamilySize	variable	

Recall	that	we	have	two	variable	related	to	the	number	of	family	members	one	is	travelling	
with:	

• SibSp	-	the	number	of	siblings	and	spouses	a	passenger	is	travelling	with	
• Parch	-	the	number	of	parents	and	children	one	is	travelling	with	



summary(titanic.all$SibSp)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##  0.0000  0.0000  0.0000  0.4989  1.0000  8.0000	

summary(titanic.all$Parch)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##   0.000   0.000   0.000   0.385   0.000   9.000	

To	get	a	better	insight	into	the	number	of	family	members	passengers	were	travelling	with,	
we’ll	create	a	new	variable	FamilySize	by	simply	adding	the	value	of	the	SibSp	and	Parch	
variables:	

titanic.all$FamilySize <- titanic.all$SibSp + titanic.all$Parch	
summary(titanic.all$FamilySize)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##  0.0000  0.0000  0.0000  0.8839  1.0000 10.0000	

We	can	observe	that	large	majority	of	passengers	didn’t	travel	with	family	members.	

table(titanic.all$FamilySize)	

## 	
##   0   1   2   3   4   5   6   7  10 	
## 790 235 159  43  22  25  16   8  11	

It	can	be	also	observed	that	those	who	travelled	with	3+	family	members	were	not	that	
numerous	

length(which(titanic.all$FamilySize>=3))/length(titanic.all$FamilySize)	

## [1] 0.09549274	

Only	10%	of	passengers	travelled	with	3+	family	members.	In	situations	like	this	-	several	
values	of	a	variable	spread	across	a	small	proportion	of	the	observations	-	it	is	
recommended	to	aggregate	those	values.	We’ll	apply	that	practice	to	the	FamilySize	
variable	and	aggregate	observations	with	3+	family	members:	

titanic.all$FamilySize[titanic.all$FamilySize > 3] <- 3	

and	turn	FamilySize	into	a	factor:	

titanic.all$FamilySize <- factor(titanic.all$FamilySize, 	
                                 levels = c(0,1,2,3), labels = c("0", "1", 
"2", "3+"))	
table(titanic.all$FamilySize)	

## 	
##   0   1   2  3+ 	
## 790 235 159 125	



Let’s	see	how	this	new	feature	affects	the	survival	prospects	

ggplot(data = titanic.all[1:891,], 	
       mapping = aes(x = FamilySize, fill = Survived)) + 	
  geom_bar(position = "dodge", width = 0.5) + 	
  theme_light()	

	

We	can	see	that	those	who	travelled	with	1	or	2	family	members	had	better	prospects	than	
those	who	travelled	without	family	members	or	with	3+	family	members.	

Making	use	of	the	Ticket	variable	

Let’s	examine	the	Ticket	variable	and	see	if	we	can	make	some	use	of	it	

titanic.all$Ticket[1:20]	

##  [1] "A/5 21171"        "PC 17599"         "STON/O2. 3101282"	
##  [4] "113803"           "373450"           "330877"          	
##  [7] "17463"            "349909"           "347742"          	
## [10] "237736"           "PP 9549"          "113783"          	
## [13] "A/5. 2151"        "347082"           "350406"          	
## [16] "248706"           "382652"           "244373"          	
## [19] "345763"           "2649"	



We	can	observe	that	some	tickets	start	with	letters,	while	others	consist	of	digits	only.	

length(unique(titanic.all$Ticket))	

## [1] 929	

929	unique	ticket	values	for	1309	passengers	suggests	that	some	passengers	were	
travelling	on	the	same	ticket.	Let’s	examine	this	further	as	a	shared	ticket	is	an	indicator	
that	a	passenger	was	not	travelling	alone,	and	we	saw	that	the	number	of	people	one	was	
travelling	with	might	have	had	affected	their	survival	prospects.	

# tapply, as applied here, computes the number of occurrences of each unique 
Ticket value 	
ticket.count <- tapply(titanic.all$Ticket,	
                       INDEX = titanic.all$Ticket,	
                       FUN = function(x) sum( !is.na(x) ))	
ticket.count.df <- data.frame(ticket=names(ticket.count), 	
                              count=as.integer(ticket.count))	
head(ticket.count.df)	

##   ticket count	
## 1 110152     3	
## 2 110413     3	
## 3 110465     2	
## 4 110469     1	
## 5 110489     1	
## 6 110564     1	

Let’s	examine	the	number	of	passengers	per	single	and	shared	tickets:	

table(ticket.count.df$count)	

## 	
##   1   2   3   4   5   6   7   8  11 	
## 713 132  49  16   7   4   5   2   1	

We	can	see	that	majority	of	passengers	travelled	on	a	single	person	ticket,	a	considerable	
number	of	them	shared	a	ticket	with	one	person,	and	a	small	number	shared	their	ticket	
with	3+	people.	

We’ll	add	ticket	count	to	each	passenger	by	merging	titanic.all	dataset	with	the	
ticket.count.df	based	on	the	ticket	value:	

titanic.all <- merge(x = titanic.all, y = ticket.count.df,	
                     by.x = "Ticket", by.y = "ticket",	
                     all.x = TRUE, all.y = TRUE)	
	
# change the name of the newly added column:	
colnames(titanic.all)[16] <- "PersonPerTicket"	

As	we	did	with	FamilySize,	we’ll	aggregate	infrequent	values	of	PersonPerTicket	and	
transform	the	variable	into	a	factor	



titanic.all$PersonPerTicket[titanic.all$PersonPerTicket > 3] <- 3	
titanic.all$PersonPerTicket <- factor(titanic.all$PersonPerTicket, 	
                                      levels = c(1,2,3), labels = c("1", "2", 
"3+"))	
table(titanic.all$PersonPerTicket)	

## 	
##   1   2  3+ 	
## 713 264 332	

Out	of	curiosity,	we	can	crosstab	this	variable	with	FamilySize	to	see	if	there	were	some	
passengers	who	were	not	travelling	with	family	members	but	still	had	company,	as	well	as	
those	who	really	travelled	alone	

xtabs(~ PersonPerTicket + FamilySize, data = titanic.all)	

##                FamilySize	
## PersonPerTicket   0   1   2  3+	
##              1  663  31  16   3	
##              2   62 170  25   7	
##              3+  65  34 118 115	

Let’s	examine	the	PersonPerTicket	feature	from	the	perspective	of	its	relevance	for	a	
passenger’s	survival	

ggplot(data = titanic.all[!is.na(titanic.all$Survived),], 	
                    mapping = aes(x = PersonPerTicket, fill=Survived)) + 	
  geom_bar(position = "dodge", width = 0.5) + 	
  theme_light()	



		

It	seems	that	this	feature	could	be	a	useful	predictor.	Note	that	when	we	merged	the	
titanic.all	and	ticket.count.df	data	frames,	the	order	of	rows	in	the	titanic.all	changed,	so	it	is	
not	the	case	any	more	that	the	first	891	observations	are	those	taken	from	the	training	set	
and	the	rest	are	from	the	test	set.	Therefore,	in	the	data	argument	(of	ggplot())	we	had	to	
select	observations	based	on	having	value	for	the	Survived	attribute.	

Let’s	also	check	what	a	plot	based	on	percentages	would	look	like.	

Compute	first	the	percentages	of	survived	and	not	survived	for	each	PersonPerTicket	value:	

tcount.surv.tbl <- prop.table(table(PersonPerTicket = 
titanic.all$PersonPerTicket,	
                                    Survived = titanic.all$Survived, 	
                                    useNA = "no"), 	
                               margin = 1)	
tcount.surv.tbl	

##                Survived	
## PersonPerTicket        No       Yes	
##              1  0.7297297 0.2702703	
##              2  0.4861878 0.5138122	
##              3+ 0.4803493 0.5196507	

In	the	table()	f.	we	used	the	useNA	argument	to	restrict	the	computations	to	only	those	
observations	where	the	Survived	variable	is	not	NA	(that	is,	observations	are	from	the	
training	set).	

Transform	the	table	into	a	data	frame	(required	for	plotting):	



tcount.surv.df <- as.data.frame(tcount.surv.tbl)	
tcount.surv.df	

##   PersonPerTicket Survived      Freq	
## 1               1       No 0.7297297	
## 2               2       No 0.4861878	
## 3              3+       No 0.4803493	
## 4               1      Yes 0.2702703	
## 5               2      Yes 0.5138122	
## 6              3+      Yes 0.5196507	

ggplot(data = tcount.surv.df, 	
       mapping = aes(x = PersonPerTicket, y = Freq*100, fill=Survived)) +	
  geom_col(width = 0.5, position = "dodge") + 	
  theme_light() + 	
  ylab("Percentage")	

		

It	seems	that	this	variable	can,	indeed,	be	worth	including	in	a	prediction	model.	

Save	the	augmented	data	set	

Finally,	let’s	split	the	augmented	data	set	again	into	training	and	test	parts	and	save	them.	
Training	observations	are	those	that	have	the	Survived	value	set;	test	observations	have	NA	
value	for	the	Survived	attribute	

ttrain.new <- titanic.all[!is.na(titanic.all$Survived),]	
ttest.new <- titanic.all[is.na(titanic.all$Survived),]	



saveRDS(ttrain.new, file = "data/titanic/train_new.RData")	
saveRDS(ttest.new, file = "data/titanic/test_new.RData")	


