
Text	classification:	Detection	of	spam	messages	

	

About	the	data	set	

The	dataset	that	we	use	in	this	example	is	a	preprocessed	subset	of	the	Ling-Spam	Dataset.	It	is	
based	on	960	real	email	messages	from	a	linguistics	mailing	list.	The	dataset	was	originaly	
prepared	for	the	Machine	Learning	course	taught	by	Stanford	Prof.	Andrew	Ng;	it	is	downloaded	
from:	
http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&d
oc=exercises/ex6/ex6.html	

The	dataset	is	split	into	two	subsets:	a	700-email	subset	for	training	and	a	260-email	subset	for	
testing;	each	subset	contains	50%	spam	and	50%	nonspam	messages.	The	data	is	stored	in	several	
.txt	files	(each	email	message	in	a	separate	file)	organized	into	4	directories:	spam-train,	nonspam-
train,	spam-test,	and	nonspam-test.	These	directories	are	made	available	in	the	data/emails	
directory	within	this	project.	

Load	the	required	R	packages	and	utility	functions	
library(tm)	

## Warning: package 'tm' was built under R version 3.4.3	

library(caret)	
library(class) # for kNN classifier	
	
source("text_mining_utils.R")	

Loading	the	traing	and	test	sets	

We’ll	start	by	loading	the	data	that	will	be	used	for	the	training	and	testing	of	the	classifier.	First,	
get	full	names	of	the	files	(with	email	messages)	to	be	used	for	the	training	set:	

spam.train.files <- list.files(path = "data/emails/spam-train", full.names = TRUE)	
#spam.train.files[1:10]	
	
nonspam.train.files <- list.files(path = "data/emails/nonspam-train", full.names = 
TRUE)	
# nonspam.train.files[1:10]	

Create	a	data	frame	for	the	training	data;	the	data	frame	will	have	3	columns	(variables):	

• message	file	path	
• message	label	(spam	/	nonspam)	
• message	content	(initially	NA)	
	



train.data <- data.frame(fpath = c(spam.train.files, nonspam.train.files),	
                         label = c(rep("spam", times=length(spam.train.files)),	
                                   rep("nonspam", 
times=length(nonspam.train.files))),	
                         text = NA, stringsAsFactors = FALSE)	
str(train.data)	

## 'data.frame':    700 obs. of  3 variables:	
##  $ fpath: chr  "data/emails/spam-train/spmsga1.txt" "data/emails/spam-
train/spmsga10.txt" "data/emails/spam-train/spmsga100.txt" "data/emails/spam-
train/spmsga101.txt" ...	
##  $ label: chr  "spam" "spam" "spam" "spam" ...	
##  $ text : logi  NA NA NA NA NA NA ...	

Read	text	from	the	training	set	of	spam	and	nonspam	messages,	and	use	it	to	populate	the	text	
variable	of	the	train.data	dataframe:	

for(i in 1:nrow(train.data)) {	
  train.data$text[i] <- read.text(train.data$fpath[i]) 	
}	
# head(train.data)	

We	should	just	transform	the	label	variable	into	a	factor:	

train.data$label <- as.factor(train.data$label)	
summary(train.data$label)	

## nonspam    spam 	
##     350     350	

Now,	load	the	test	data	and	build	a	data	frame	that	will	be	used	for	testing	the	classifier.	The	
procedure	is	the	same	as	the	one	we	followed	for	the	training	data,	so,	we’ll	do	all	in	one	chunk:	

spam.test.files <- list.files(path = "data/emails/spam-test", full.names = TRUE)	
nonspam.test.files <- list.files(path = "data/emails/nonspam-test", full.names = 
TRUE)	
	
test.data <- data.frame(fpath = c(spam.test.files, nonspam.test.files),	
                         label = c(rep("spam", times=length(spam.test.files)),	
                                   rep("nonspam", 
times=length(nonspam.test.files))),	
                         text = NA, stringsAsFactors = FALSE)	
	
for(i in 1:nrow(test.data)) {	
  test.data$text[i] <- read.text(test.data$fpath[i]) 	
}	
	
test.data$label <- as.factor(test.data$label)	
	
# head(test.data)	



Data	preparation	(text	preprocessing)	

The	loaded	text	is	already	pre-processed:	

• stop-words	have	been	removed	
• numbers	and	punctuation	have	been	removed	
• text	has	been	converted	to	lower	case	
• it	has	also	been	lemmatized	
• all	white	spaces	(tabs,	newlines,	spaces)	have	been	trimmed	to	a	single	space	character.	

So,	no	need	for	pre-processing	it	here.	We	just	need	to	create	a	corpus	and	then	a	Document	Term	
Matrix.	

Create	a	corpus	

We	will	create	the	corpus	using	both	training	and	testing	data	sets;	later,	when	building	a	
classifier,	we	will,	of	course,	use	just	the	training	portion	of	the	corpus.	So,	let’s	first	merge	the	two	
data	sets:	

all.data <- rbind(train.data, test.data)	
dim(all.data)	

## [1] 960   3	

We	have	960	instances	in	total:	first	700	are	for	training,	the	rest	(260)	for	testing.	

Now,	we	can	create	the	corpus:	

corpus <- Corpus(VectorSource(all.data$text)) 	

Create	a	Document	Term	Matrix	

Next,	we	create	a	Document	Term	Matrix	(DTM)	using	words	of	length	2+	and	term	frequency	(TF)	
weighting	scheme	(the	default):	

dtm <- DocumentTermMatrix(x = corpus,	
                          control = list(wordLengths = c(2,Inf),	
                                         weighting = weightTfIdf))	
inspect(dtm)	

## <<DocumentTermMatrix (documents: 960, terms: 22744)>>	
## Non-/sparse entries: 149194/21685046	
## Sparsity           : 99%	
## Maximal term length: 74	
## Weighting          : term frequency - inverse document frequency (normalized) 
(tf-idf)	
## Sample             :	
##      Terms	
## Docs  adult click com free        http    language our sex site	
##   352     0     0   0    0 0.000000000 0.000000000   0   0    0	
##   486     0     0   0    0 0.000000000 0.001850028   0   0    0	
##   516     0     0   0    0 0.026949908 0.000000000   0   0    0	
##   525     0     0   0    0 0.048717141 0.000000000   0   0    0	



##   532     0     0   0    0 0.000000000 0.000000000   0   0    0	
##   616     0     0   0    0 0.006529101 0.000000000   0   0    0	
##   647     0     0   0    0 0.000000000 0.000000000   0   0    0	
##   650     0     0   0    0 0.009279455 0.000000000   0   0    0	
##   899     0     0   0    0 0.057574803 0.000000000   0   0    0	
##   922     0     0   0    0 0.005579937 0.000000000   0   0    0	
##      Terms	
## Docs   university	
##   352 0.000000000	
##   486 0.002003405	
##   516 0.034995654	
##   525 0.000000000	
##   532 0.010344627	
##   616 0.000000000	
##   647 0.000000000	
##   650 0.000000000	
##   899 0.000000000	
##   922 0.007245796	

We	have	very	high	number	of	words	(almost	23K),	and	very	sparse	DTM	(99%).	So,	we	should	
better	remove	the	sparse	terms:	

dtm.reduced <- removeSparseTerms(dtm, sparse = 0.975)	
dtm.reduced	

## <<DocumentTermMatrix (documents: 960, terms: 1268)>>	
## Non-/sparse entries: 90327/1126953	
## Sparsity           : 93%	
## Maximal term length: 15	
## Weighting          : term frequency - inverse document frequency (normalized) 
(tf-idf)	

This	looks	better:	1268	words	preserved	out	of	the	original	set	of	22,744	words	(~6%);	the	
overall	sparsity	is	reduced	to	93%,	and	the	max	term	length	is	reduced	to	15	characters	(from	74)	

Since	we	want	to	use	DTM	for	classification	purposes,	we	need	to	transform	it	into	a	‘simple’	
matrix	that	can	be	passed	to	a	function	for	building	a	classifier:	

dtm.final <- as.matrix(dtm.reduced)	
dim(dtm.final)	

## [1]  960 1268	

Split	the	matrix	into	training	and	test	parts	

training.dtm <- dtm.final[1:nrow(train.data),]	
test.dtm <- dtm.final[(nrow(train.data)+1):nrow(dtm.final),]	

Build	kNN	classifier	

To	execute	the	KNN	classification	in	R,	we	will	use	the	knn()	f.	from	the	class	package	(already	
loaded).	We	need	to	provide	the	knn()	f.	with	the	following	data:	



• training	data	with	no	labels,	
• test	data	with	no	labels,	
• labels	for	the	training	set,	
• number	of	neighbours	to	consider	(parameter	k)	

Initially,	we	will	simply	guess	the	number	of	neighbours	(k),	and	later	on	we	will	apply	a	more	
systematic	approach	to	determine	the	best	value	for	k.	

k <- 5	
train.labels <- train.data$label	
set.seed(2612)	
knn.fit <- knn(train = training.dtm,	
               test = test.dtm,	
               cl = train.labels,	
               k = k)	

Create	the	confusion	matrix	

test.labels <- test.data$label	
conf.mat <- table(Predictions = knn.fit, 	
                  Actual = test.labels)	
conf.mat	

##            Actual	
## Predictions nonspam spam	
##     nonspam     127   16	
##     spam          3  114	

Out	of	260	observations	in	the	test	set,	we	have	16	false	negatives	(FN),	and	3	false	positives	(FP).	
In	this	case,	FPs	are	emails	that	are	not	spam	but	were	classified	as	spam,	whereas	FNs	are	spam	
emails	that	were	recognized	as	not	spam.	So,	we	should	try	to	reduce	FP	(not	spam	that	ends	up	in	
the	Spam	folder),	even	at	the	expense	of	(slightly)	increasing	FN	(spam	messages	that	end	up	in	
Inbox);	in	other	words,	we	should	be	ready	to	‘traid’	some	recall	for	higher	precision.	

Compute	evaluation	measures:	

knn1.eval <- compute.eval.measures(conf.mat)	
knn1.eval	

##  accuracy precision    recall        F1 	
##    0.9269    0.9769    0.8881    0.9304	

Now,	intead	of	guessing,	we’ll	cross-validate	kNN	models	with	different	values	for	k,	and	see	which	
value	fo	k	gives	the	best	performance.	Then,	we’ll	use	the	test.set	to	test	the	model	that	proves	to	
be	the	best.	

The	caret	package	will	be	used	to	find	the	optimal	parameter	(k)	value	through	cross	validation.	
First,	define	cross-validation	(cv)	parameters;	we’ll	do	10-fold	cross-validation:	

numFolds = trainControl( method = "cv", number = 10 )	



Then,	define	the	range	of	k	values	to	examine	in	the	cross-validation.	We’ll	take	odd	numbers	
between	3	and	25	-	recall	that	in	case	of	binary	classification,	it	is	recommended	to	choose	an	odd	
number	for	k	

kGrid = expand.grid(.k = seq(from = 3, to = 25, by = 2)) 	

Train	the	model	through	cross-validation	

set.seed(2612)	
knn.cv <- train(x = training.dtm, 	
                y = train.labels, 	
                method = "knn", 	
                trControl = numFolds, 	
                tuneGrid = kGrid)	

Examine	the	obtained	results	for	different	values	of	k:	

knn.cv	

## k-Nearest Neighbors 	
## 	
##  700 samples	
## 1268 predictors	
##    2 classes: 'nonspam', 'spam' 	
## 	
## No pre-processing	
## Resampling: Cross-Validated (10 fold) 	
## Summary of sample sizes: 630, 630, 630, 630, 630, 630, ... 	
## Resampling results across tuning parameters:	
## 	
##   k   Accuracy   Kappa    	
##    3  0.9257143  0.8514286	
##    5  0.9428571  0.8857143	
##    7  0.9514286  0.9028571	
##    9  0.9557143  0.9114286	
##   11  0.9514286  0.9028571	
##   13  0.9557143  0.9114286	
##   15  0.9500000  0.9000000	
##   17  0.9542857  0.9085714	
##   19  0.9485714  0.8971429	
##   21  0.9500000  0.9000000	
##   23  0.9485714  0.8971429	
##   25  0.9471429  0.8942857	
## 	
## Accuracy was used to select the optimal model using  the largest value.	
## The final value used for the model was k = 13.	

plot(knn.cv)	



	

For	k=13,	we	get	the	best	value	for	all	the	examined	metrics.	So,	we	choose	k=13	as	the	number	of	
neighbours.	

knn.fit2 <- knn(train = training.dtm,	
                test = test.dtm,	
                cl = train.labels,	
                k = 13)	

conf.mat2 <- table(Predicted = knn.fit2, Actual = test.labels)	
conf.mat2	

##          Actual	
## Predicted nonspam spam	
##   nonspam     126   12	
##   spam          4  118	

We	reduced	the	number	of	FNs,	but	slightly	increased	the	number	of	FPs.	

knn2.eval <- compute.eval.measures(conf.mat2)	
knn2.eval	

##  accuracy precision    recall        F1 	
##    0.9385    0.9692    0.9130    0.9403	

Compare	the	evaluation	measures	obtained	for	the	two	models:	



data.frame(rbind(knn1.eval, knn2.eval), row.names = c("k=5", "k=13"))	

##      accuracy precision recall     F1	
## k=5    0.9269    0.9769 0.8881 0.9304	
## k=13   0.9385    0.9692 0.9130 0.9403	

We’ve	managed	to	improve	all	the	metrics	except	for	precision.	


