
BAGGING AND RANDOM
FORESTS
Jelena Jovanovic
Email: jeljov@gmail.com
Web: http://jelenajovanovic.net

http://gmail.com
http://jelenajovanovic.net

Outline
§ Bagging

§ Bootstrapping

§ Bagging for Regression Trees

§ Bagging for Classification Trees

§ Out-of-Bag Error Estimation

§ Variable Importance: Relative Influence Plots
§ Random Forests

2

BAGGING

High variance problem
Decision trees tend to overfit and suffer from high variance

4

Bagging

• It is desirable to have models with low variance as these
yield similar results when applied to distinct data sets

• One way to solve this high variance problem is to use
bagging – bootstrap aggregating

5

What is bootstrapping?
It consists of resampling the given dataset through random
sampling with replacement

§ i.e., each new dataset is obtained by random sampling with
replacement from the original dataset

§ the new datasets are of the same size as the original dataset

6

What is bagging?
• Bagging is a general-purpose procedure for reducing the

variance of a machine learning method

• It is based on two key things:
• Bootstrapping: provides a plenty of training datasets
• Averaging: leads to a reduction in variance

• Why does averaging reduce variance?
• Given a set of n independent observations Z1, …, Zn, each with

variance 𝜎!, the variance of the mean 𝑍̅of the observations is

given by ⁄!" "

7

How does bagging work?
• Generate B different bootstrapped training datasets

• Train the chosen machine learning method on each
of the B training datasets

• Make prediction:
• Regression: average all predictions from all B models
• Classification: majority vote among all B models

8

Bagging for regression trees
Procedure:
• Create B bootstrapped training datasets
• Use the training sets to construct B regression trees and

generate predictions with each one
• Average the resulting predictions

Important:
• The produced trees are not pruned, so each individual tree

has high variance but low bias
• Averaging the predictions produced by these trees reduces

the variance, thus leading to low variance and bias

9

Example 1: Housing Data

10

Source: http://lib.stat.cmu.edu/datasets/boston

the value to be
predicted

http://lib.stat.cmu.edu/datasets/boston

Example 1: Housing Data

11

The red line
represents the test
mean square error
using a single tree

The black line
corresponds to the
bagging error rate

0 20 40 60 80 100

20
30

40
50

Number of Bootstrap Data Sets

Te
st

 M
ea

n
Su

m
 o

f S
qu

ar
es

Bagging for classification trees
Procedure:
• Create B bootstrapped training datasets
• Use the datasets to construct B classification trees and

generate predictions with each one
• Make the overall prediction using one of these two

approaches (both tend to work well):
§ Majority vote – choose the class voted (i.e., predicted) by the

majority of the bagged classification trees
§ If the bagged trees produce probability estimates, average

the probabilities and then predict the class with the highest
probability

12

Example 2: Car Seat Data

14

0 20 40 60 80 100

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Number of Bootstrap Data Sets

Te
st

 E
rro

r r
at

e

The red line
represents the test
error rate using a
single tree

The black line
corresponds to the
bagging error rate
using majority vote,
while the blue line
averages the
probabilities.

Out-of-Bag Error Estimation
• Since bootstrapping involves random selection of subsets of

observations to build a training data set, then the remaining
non-selected part could be used as the testing data

• On average, each bagged tree makes use of around 2/3 of the
observations, so we end up having 1/3 Out-of-Bag (OOB)
observations that can be used for testing

• This approach is particularly convenient when performing
bagging on large data sets for which cross-validation would be
computationally very demanding

15

Variable importance measure
• Bagging typically improves the accuracy over prediction

using a single tree, but this comes at the expense of
having a model that is hard to interpret

• We have hundreds of trees, and it is no longer clear which
variables are most important to the procedure, as it is
impossible to plot the model

• But, we can still get an overall summary of the importance
of each predictor using Relative Influence Plots

16

Relative Influence Plots
• Relative influence plots allow for identifying variables that

are the most useful in predicting the response

• These plots give a score for each variable

• The larger the score the more influence the variable has
• a number close to zero indicates the variable is not important and

could be dropped

17

Example:
Relative Influence Plot for Housing Data

• Median Income is
by far the most
important variable

• Longitude,
Average
occupancy, and
Latitude are the
next most
important

18

Relative Influence Plots

• The scores represent
• the total decrease in MSE that is due to the splits on a particular

variable (predictor), in case of regression problem

• the total decrease in the Gini index or Cross-entropy, in the
classification case

19

Recommendation

For an excellent explanation of what bagging is, why it
tends to produce good ML models, and the like, watch the
tutorial by Alexander Ihler, available on YouTube:
https://www.youtube.com/watch?v=Rm6s6gmLTdg

20

https://www.youtube.com/watch%3Fv=Rm6s6gmLTdg

RANDOM FORESTS

Random Forests
• A very efficient statistical learning method

• Builds on the idea of bagging, but includes a small tweak
that de-correlates the trees, and leads to improved
performance

22

Random Forests
• How does it work?
• Create a number of bootstrapped training samples to be used

for building a number of decision trees (e.g. 500)
• When building these trees, each time a split in a tree is

considered, instead of all p predictors, a random sample of m
predictors is chosen as split candidates from the full set of p
predictors (usually 𝑚 ≈ 𝑝)

23

Random Forests
Why considering a random sample of predictors for each split?
• Suppose there is a very strong predictor in the data set along with a

number of other moderately strong predictors;
• In that case, in the collection of bagged trees, most or all of them will

use the very strong predictor for the first split
• All bagged trees will look similar => predictions from the bagged trees

will be highly correlated
• Averaging many highly correlated quantities does not lead to a large

variance reduction
• Therefore, random forests “de-correlates” the bagged trees leading to

higher reduction in variance

24

Random Forests

Random Forest with
different values of “m”

Notice when random
forests are built using
m = p, then this
amounts simply to
bagging.

25
326 8. Tree-Based Methods

0 100 200 300 400 500

0.
2

0.
3

0.
4

0.
5

Number of Trees

Te
st

 C
la

ss
ifi

ca
tio

n
Er

ro
r

m=p
m=p/2
m= p

FIGURE 8.10. Results from random forests for the fifteen-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of the
number of trees. Each colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7%.

Recall that bagging involves creating multiple copies of the original train-
ing data set using the bootstrap, fitting a separate decision tree to each
copy, and then combining all of the trees in order to create a single predic-
tive model. Notably, each tree is built on a bootstrap data set, independent
of the other trees. Boosting works in a similar way, except that the trees are
grown sequentially: each tree is grown using information from previously
grown trees. Boosting does not involve bootstrap sampling; instead each
tree is fit on a modified version of the original data set.
Consider first the regression setting. Like bagging, boosting involves com-

bining a large number of decision trees, f̂1, . . . , f̂B. Boosting is described
in Algorithm 8.2.
What is the idea behind this procedure? Unlike fitting a single large deci-

sion tree to the data, which amounts to fitting the data hard and potentially
overfitting, the boosting approach instead learns slowly. Given the current
model, we fit a decision tree to the residuals from the model. That is, we
fit a tree using the current residuals, rather than the outcome Y , as the re-
sponse. We then add this new decision tree into the fitted function in order
to update the residuals. Each of these trees can be rather small, with just
a few terminal nodes, determined by the parameter d in the algorithm. By
fitting small trees to the residuals, we slowly improve f̂ in areas where it
does not perform well. The shrinkage parameter λ slows the process down

26

Acknowledgement:
These slides are based on the slides prepared for the course
“Applied Modern Statistical Learning Techniques” (link) and
book “Introduction to Statistical Learning” (link)

http://www.alsharif.info/
http://www-bcf.usc.edu/~gareth/ISL/index.html

