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BAGGING



High variance problem
Decision trees tend to overfit and suffer from high variance
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Bagging

• It is desirable to have models with low variance as these  
yield similar results when applied to distinct data sets

• One way to solve this high variance problem is to use 
bagging – bootstrap aggregating
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What is bootstrapping?
It consists of resampling the given dataset through random 
sampling with replacement 

§ i.e., each new dataset is obtained by random sampling with 
replacement from the original dataset

§ the new datasets are of the same size as the original dataset 
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What is bagging?
• Bagging is a general-purpose procedure for reducing the 

variance of a machine learning method

• It is based on two key things: 
• Bootstrapping: provides a plenty of training datasets
• Averaging: leads to a reduction in variance

• Why does averaging reduce variance?
• Given a set of n independent observations Z1, …, Zn, each with 

variance  𝜎!,  the variance of the mean 𝑍̅of the observations is 

given by ⁄!" "
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How does bagging work?
• Generate B different bootstrapped training datasets

• Train the chosen machine learning method on each 
of the B training datasets

• Make prediction:
• Regression: average all predictions from all B models
• Classification: majority vote among all B models
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Bagging for regression trees
Procedure:
• Create B bootstrapped training datasets
• Use the training sets to construct B regression trees and 

generate predictions with each one
• Average the resulting predictions

Important: 
• The produced trees are not pruned, so each individual tree 

has high variance but low bias 
• Averaging the predictions produced by these trees reduces 

the variance, thus leading to low variance and bias
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Example 1: Housing Data
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Source: http://lib.stat.cmu.edu/datasets/boston

the value to be 
predicted

http://lib.stat.cmu.edu/datasets/boston


Example 1: Housing Data
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The red line 
represents the test 
mean square error 
using a single tree

The black line 
corresponds to the 
bagging error rate 
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Bagging for classification trees
Procedure:
• Create B bootstrapped training datasets
• Use the datasets to construct B classification trees and 

generate predictions with each one
• Make the overall prediction using one of these two 

approaches (both tend to work well): 
§ Majority vote – choose the class voted (i.e., predicted) by the 

majority of the bagged classification trees
§ If the bagged trees produce probability estimates, average 

the probabilities and then predict the class with the highest 
probability
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Example 2: Car Seat Data
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The red line 
represents the test 
error rate using a 
single tree

The black line 
corresponds to the 
bagging error rate 
using majority vote, 
while the blue line 
averages the 
probabilities.



Out-of-Bag Error Estimation
• Since bootstrapping involves random selection of subsets of 

observations to build a training data set, then the remaining 
non-selected part could be used as the testing data 

• On average, each bagged tree makes use of around 2/3 of the 
observations, so we end up having 1/3 Out-of-Bag (OOB) 
observations that can be used for testing

• This approach is particularly convenient when performing 
bagging on large data sets for which cross-validation would be 
computationally very demanding
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Variable importance measure
• Bagging typically improves the accuracy over prediction 

using a single tree, but this comes at the expense of 
having a model that is hard to interpret

• We have hundreds of trees, and it is no longer clear which 
variables are most important to the procedure, as it is 
impossible to plot the model

• But, we can still get an overall summary of the importance 
of each predictor using Relative Influence Plots
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Relative Influence Plots
• Relative influence plots allow for identifying variables that 

are the most useful in predicting the response

• These plots give a score for each variable 

• The larger the score the more influence the variable has 
• a number close to zero indicates the variable is not important and 

could be dropped 
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Example: 
Relative Influence Plot for Housing Data

• Median Income is 
by far the most 
important variable

• Longitude, 
Average 
occupancy, and 
Latitude are the 
next most 
important
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Relative Influence Plots

• The scores represent 
• the total decrease in MSE that is due to the splits on a particular 

variable (predictor), in case of regression problem 

• the total decrease in the Gini index or Cross-entropy, in the 
classification case
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Recommendation

For an excellent explanation of what bagging is, why it 
tends to produce good ML models, and the like, watch the 
tutorial by Alexander Ihler, available on YouTube:
https://www.youtube.com/watch?v=Rm6s6gmLTdg
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RANDOM FORESTS



Random Forests
• A very efficient statistical learning method

• Builds on the idea of bagging, but includes a small tweak 
that de-correlates the trees, and leads to improved 
performance
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Random Forests
• How does it work?
• Create a number of bootstrapped training samples to be used 

for building a number of decision trees (e.g. 500)
• When building these trees, each time a split in a tree is 

considered, instead of all p predictors, a random sample of m
predictors is chosen as split candidates from the full set of p
predictors (usually 𝑚 ≈ 𝑝)
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Random Forests
Why considering a random sample of predictors for each split?
• Suppose there is a very strong predictor in the data set along with a 

number of other moderately strong predictors; 
• In that case, in the collection of bagged trees, most or all of them will 

use the very strong predictor for the first split
• All bagged trees will look similar => predictions from the bagged trees 

will be highly correlated
• Averaging many highly correlated quantities does not lead to a large 

variance reduction 
• Therefore, random forests “de-correlates” the bagged trees leading to 

higher reduction in variance
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Random Forests

Random Forest with 
different values of “m”

Notice when random 
forests are built using 
m = p, then this 
amounts simply to 
bagging.
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326 8. Tree-Based Methods
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FIGURE 8.10. Results from random forests for the fifteen-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of the
number of trees. Each colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7%.

Recall that bagging involves creating multiple copies of the original train-
ing data set using the bootstrap, fitting a separate decision tree to each
copy, and then combining all of the trees in order to create a single predic-
tive model. Notably, each tree is built on a bootstrap data set, independent
of the other trees. Boosting works in a similar way, except that the trees are
grown sequentially: each tree is grown using information from previously
grown trees. Boosting does not involve bootstrap sampling; instead each
tree is fit on a modified version of the original data set.
Consider first the regression setting. Like bagging, boosting involves com-

bining a large number of decision trees, f̂1, . . . , f̂B. Boosting is described
in Algorithm 8.2.
What is the idea behind this procedure? Unlike fitting a single large deci-

sion tree to the data, which amounts to fitting the data hard and potentially
overfitting, the boosting approach instead learns slowly. Given the current
model, we fit a decision tree to the residuals from the model. That is, we
fit a tree using the current residuals, rather than the outcome Y , as the re-
sponse. We then add this new decision tree into the fitted function in order
to update the residuals. Each of these trees can be rather small, with just
a few terminal nodes, determined by the parameter d in the algorithm. By
fitting small trees to the residuals, we slowly improve f̂ in areas where it
does not perform well. The shrinkage parameter λ slows the process down



26

Acknowledgement: 
These slides are based on the slides prepared for the course
“Applied Modern Statistical Learning Techniques” (link) and 
book “Introduction to Statistical Learning” (link)

http://www.alsharif.info/
http://www-bcf.usc.edu/~gareth/ISL/index.html

