#HEHH

#

R #

AR

H =

H H H

H H e H H e S e e e S S S e e e S

=

install.packages ("<package name>")

library (<package name>)

print (<something>)

Assignment statement: x <- <something>

Manipulating objects in the
1s () #
rm(, <02>, <03>, ...) #
rm(list = 1s()) #

Operators:

+ Add, 2 + 3 =5

- Subtract, 5 - 2 = 3

Multiply, 2 * 3 =

Divide, 6 / 2 =
Exponent, 2 ~ 3

% Modulus operator, 9%%2 =

/% Integer division, 9 %

< Less than

> Greater than

= Equal to

<= Less than or equal to

>= Greater than or equal to

= Not equal to

! Not

| OR

& And

> N ok
I w
[e9)

oe oo

Expressions:
<x> /[<y> - <z>"2

Absolute value:
abs (<value>)

workspace:

list all objects in memory
remove one or more objects from memory by their names

remove all objects

from memory

(usually not recommended)

H H H H

Vectors:

<y> <- c(<somethingl>, <something2>,
<y> <- rep(<something>, <times>)

<y> <- <intl>:<int2>

<something3>, ...)

<y> <- seq(from = <valuel>, to = <value2>, by = <step>)

Matrices:

<m> <- matrix(c(3, 5, 7, 1, 9, 4), nrow = 3, ncol = 2, byrow = TRUE)

<m>.nrow <- nrow(<m>) # number of rows

<m>.ncol <- ncol (<m>) # number of columns

<m> <= t(<m>) # transpose <m>

<m>[3,2]

<m>[2,]

Lists: ordered collections of elements of different types

<list> <- list(<el.name> = <el>, <e2.name> = <e2>, <e3.name> = <e3>, ...)

<list>[[<index>]] # accessing list element by index, showing value only (returns a vector)

<list>[<index>] # accessing list element by index, showing both name and value (returns a list)
<list>S$<element.name> # accessing list element by its name

is.list (<something>) # Is <something> a list?

<combined.list> <- c(<listl>, <list2>, <list3>, ...) # list concatenation

names (<list>) # names of list elements

<list>[names (<list>) == <element.name>] # all elements of a list having the same name

unlist(<list>) # convert list into a named vector

unlist(<list>, use.names = FALSE) # convert list into a character vector

append (<list>, # insert new element into an existing list, after index <n>
list (<el.name> = <e>), # new element must be a list itself, that's why list(<el.name> =
<e>)

<n>) # <n> is optional; if omitted, new element is appended at the end
<list>[[<n>]] <- NULL # remove <n>th element from <list>

class (<something>) # data type

mode (something), typeof (<something>) # how a data item is internally stored in memory

Factors:

b <-c(1, 2, 2, 2, 3, 1, 1, 4, 5, 4)

b.as.factor <- as.factor (b)

levels (b.as.factor)

£ <- factor(c(l, 2, 3))

Dataframes:
e.g., <dataframe> <- as.data.frame (<matrix>)
str(<dataframe>)

Reading a dataset:
<dataframe> <- read.csv("<filename>", stringsAsFactors = FALSE)

Saving a dataset (modified or newly created dataset):

write.csv(x = <dataframe>, file = "<filename>", row.names = F) # do not include the row names (row
numbers) column

saveRDS (object = <dataframe or another R object>, file = "<filename>") # save R object for the next
session

<dataframe or another R object> <- readRDS(file = "<filename>") # restore R object in the next
session

Examining a dataframe:

str (<dataframe>) # structure of <dataframe>, all variables/columns

dim(<dataframe>) # showing dimensions (numbers of rows and columns) of a dataframe

names (<dataframe>) # showing column names

head(<dataframe>) # the first few rows

tail (<dataframe>) # the last few rows

<dataframe>[,] # the entire dataframe

<dataframe> # the entire dataframe

<dataframe>[<m>,] # m-th row

<dataframe>[,<n>] # n-th column

summary (<dataframe>$<column>) # summarizing a variable/column values

fix (<dataframe>) # editing a dataframe

new.df <- edit(<dataframe>) # editing a dataframe and assigning the modified dataframe to another

datavrame

Adding/Removing columns to/from a dataframe:

<dataframe>$<new column name> <- <default value> # adding a new column (default values)

<dataframe>$<column name> <- NULL # removing a column

Adding a new row to a dataframe - the row must be a 1-line dataframe with the same column names:

<new row> <- data.frame (<column name 1> = <value 1>, <column name 2> = <value 2>,...)

<new data frame> <- rbind(<dataframe>, <new row>) # append new row to the end of the existing dataframe
<new data frame> <- rbind(<dataframe>[1:1, 1], # insert new row in the middle

=

<new row>,

<dataframe>[(i + 1) :nrow(<dataframe>), 1)

Removing rows from a dataframe

<dataframe>[-i,] # show dataframe without i-th row

<dataframe>[-c(i, J, k), 1 # show dataframe without rows i, j, k
<dataframe> <- <dataframe>[-1,] # remove i-th row from dataframe

<dataframe> <- <dataframe>[-c (i, J, k),] # remove rows i, j, k from dataframe
<dataframe> <- <dataframe>[-(i:k),] # remove rows 1 to k from dataframe

Changing column names:

colnames (<dataframe>) [1] <- "<new name>"

Changing row names:

rownames (<dataframe>) [1] <- "<new name>"

rownames (<dataframe>) <- c("<new name 1>", "<new name 2>",...)

rownames (<dataframe>) <- c(1, 2,...)

rownames (<dataframe>) <- list ("<new name 1>", <numeric 2>,...)

Slicing and dicing dataframes:

<selection> <- <dataframe>[<some rows>, <some columns>]

<selection> <- <dataframe>[i:k, c("<column 1>", "<column 2>",...)]

<selection> <- <dataframe>[<indexes>,]

<selection> <- subset (<dataframe>, # subset () is much like SELECT...
FROM. .. WHERE

<logical condition for the rows to return>,

<select statement for the columns to return>) # can be omitted; column names not

prefixed by <dataframe>$
<new dataframe> <- <dataframe>][,
<dataframe>[,

c("<coll name>",
<new dataframe> <-

Shuffling rows/columns:

"<col2 name>")]
<coll index>:<co0l2 index>)]

<dataframe> <- <dataframe>[sample (nrow (<dataframe>)),] # shuffle
<dataframe> <- <dataframe>[, sample(ncol (<dataframe>))] # shuffle
Replacing selected values in a column:

<selected var name> <- <dataframe>$<column> == <selected value>

<dataframe>S$<column>[<selected var name>] <- <new value>

row-wise
column-wise

Applying functions to all elements in rows/columns of a dataframe:

apply(<dataframe>, <1 | 2>, <function(x) {...}>) # 1 | 2: apply function(x) by row | column
IMPORTANT: use drop = FALSE in apply(...) when subsetting <dataframe> with [],

i.e. <dataframe>[i, j, drop = FALSE]

sapply(<vector>, FUN = function(x) {...}) # function(x): function to be applied to each element of
<vector>

Partitioning a dataframe:

install.packages ('caret')

library(caret)

set.seed(<any specific int>) # allows for repeating the randomization process exactly

<indexes> <- createDataPartition (<dataframe>$<column>, p = 0.8, list = FALSE)

<partition 1> <- <dataframe>[<indexes>,]

<partition 2> <- <dataframe>[-<indexes>, |

for, if, break, next:

for (<i> in <int vector>) {

<line 1>

<line 2>

...

if (<logical condition>) {

<line 11>

<line 12>

...

break # break: exit the loop; next: skip the remaining lines in this iteration
}

...

<line n>

)

while, if-else, break, next:

<i> <- <initial value>

while (logical condition involving <i>) {
<line 1>
<line 2>

if (<logical condition>) {
<line 11>
<line 1i2>

H H H H H H H W

H H = H H H H H W == H H H H H W W W W =

H =

H H H H H H H W H

break # break: next:
} else {
<line j1>

<line j2>

exit the loop; skip the remaining lines in

<line n>
<i> <- <modify <i>>

ifelse (<condition>, v1, v2) # can return a vector
Data type conversion
b <- c¢(1, 2, 2, 2, 3, 1, 1, 4, 5, 4)

b.as.factor <- as.factor (b)
levels (b.as.factor)
e.g., <dataframe> <-

str (<dataframe>)

as.data.frame (<matrix>)

Convert numeric to factor:
<dataframe>$<numeric column with few different values> <-
factor (<dataframe>S$<numeric column with few different values>,

this iteration

levels = ¢c(0, 1, ..., k), labels = c("<11>", "<12>", "<1k>"))
Attributes of R objects (dataframes, matrices, factors, lists, tables...)
attributes (<dataframe> | <matrix> | <factor> | <list> | table | ...)
Tables
The table () function:
table (<var>) # typically a factor or an integer var
The prop.table() function:
prop.table (table (<var>))
round (prop.table (table (<var>)), digits = <n>)
Row and column margins:
table (<varl>, <var2>) # <varl>, <var2>: usually factors or integers
table (<rows title> = <varl>, <columns title> = <var2>) # add common titles for rows/columns

prop.table(table (<varl>, <var2>), margin = 1) # all row margins

(sums of values by row)

are 1.0

prop.table(table(<varl>, <var2>), margin = 2) # all column margins (sums of values by column)
are 1.0

Vectors

Differences in initializing vectors and dataframe columns:

<vector> <- rep(<value>, <times>)

<vector> <- <value>

<dataframe>$<column> <- rep (<value>, <times>)

<dataframe>$<column> <- <value>

Length of a vector:

length (<vector>)

Counting the number of elements with the values of <x> in a vector:
1. <table> <- table(<vector>)

<table>
<table>["<x>"], or <table>[names (<table>) == <x>]
2. sum (<vector> == <x>)
3. length (which (<vector> == <x>)) # which() is like WHERE in SQL
Appending an element to a vector:
<vector> <- c(<vector>, <element>) # type conversion occurs if <element> is of different type than
[i]
<vector> <- append (<vector>, <element>) # type conversion occurs if <element> is of different type than
[1]

<vector> <- append(<vector>, <element>,

after = <n>) # insert <=> append at a desired location
<vector> <- append(<vector>, NA)
Removing NAs from a vector in NA-sensitive functions:

H= o o 3 o o 3 < H < I3 FH o o 3 o o o 3 I o o 3 I

<function> (<vector>, na.rm = TRUE)
Selecting items matching criteria from a numeric vector (added check for NAs and NaNs) :
<numeric vector> <- c(<nl>, <n2>, <n3>, ..., NA, ...NaN)
<selected> <- <numeric vector>[<logical criterion> & !is.na(<numeric vector>)] # is.na() 1s TRUE for both
NA and NaN
is.na() is the only way to test if <something> is NA (<something> == NA does not work)
Range of a numeric vector:
range (<vector>)
Create numeric vector with <length> elements:
<vector> <- vector (mode = "numeric", length = <length>)

Check if numeric variables follow normal distribution:

summary (<numeric variable>) # the mean and the median values similar: probably normal
distribution

plot (density((<numeric variable>)) # visual inspection

hist (<numeric variable>, breaks = <n>) # visual inspection; <n>: number of bins in the histogram

ggnorm (<numeric variable>) # values lie more or less along the diagonal (straight line)
shapiro.test (<numeric variable>) # good for small sample sizes, e.g. n < ~2000; HO: normal
distribution

Discretizing numeric variables (using bnlearn::discretize()):

library(bnlearn)

?discretize()

<new dataframe with discretized variables> <-

discretize (<numeric dataframe>, # <original dataframe>[, c(<num. col. 1>, <num. col. 1>,
el

method = "quantile" | # use equal-frequency intervals (default)

method = "interval", # use equal-length intervals

breaks = c(<nl>, <n2>, ..., <ncol>)) # no. of discrete intervals for each column
Scatterplot matrices (useful for examining the presence of linear relationship between several pairs of
variables) :

pairs (~<x1> + <x2> + ., data = <dataframe>)

Data normalization:

library(clusterSim)

<dataframe with numeric columns> <- # works with vectors and matrices as well
data.Normalization(<dataframe with numeric columns>,

type = "n4d", # normalization: (x - min(x)) / (max(x) -
min(x))

normalization = "column") # normalization by columns

Alternatively:

<norm.f> = function(x) {(x-min(x))/ (max(x)-min(x))}

<dataframe with numeric columns>[] <- # [] preserves the "data.frame" class

lapply (<dataframe with numeric columns>, <norm.f>)

Alternatively:

install.packages ("scales")

library(scales)

<dataframe with numeric columns> <-

lapply (<dataframe with numeric columns>, rescale) # normalization: (x - min(x)) / (max(x) -

min(x))

Alternatively:
install.packages ("caret")
library (caret)
<pre-processed object> <-
preProcess (<dataframe with numeric columns>,

H H H H H

method = 'range') # normalization: (x - min(x)) / (max(x) -
min (x))
<dataframe with numeric columns> <-
predict (<pre-processed object>,
<dataframe with numeric columns>)
Correlation plots: # correlations between numeric variables in the dataset
<numeric dataframe> <- # create all-numeric dataframe,
data.frame (<num col 1 name> = <dataframe>S$<num col 1>, # leave out all non-numeric columns
<num col 2 name> = <dataframe>S$<num col 2>, # from the original dataframe
-)
<correlation matrix> <- cor (<numeric dataframe>) # all-numeric dataframe
library (corrplot)
corrplot.mixed(<correlation matrix>, tl.cex = <text font size>, number.cex = <number font size>)
Quantiles/Percentiles:
<gquantiles> <- quantile(<dataset>$<column name>, # examine the 0th, 2.5th, ..., percentile
probs = seqg(from = 0.0, to = 0.1, by = 0.025))
Sorting:
sort (<numeric vector>) # sort <numeric vector>
install.packages ("knitr") # pretty-printing tables etc. in the console
library(knitr) # (a set of "fancy" reporting tools)
kable(x = <stats>, format = "rst")

ggplot2

Bar graphs:

ggplot (data = <dataframe>,

aes (x = <column 1>, y = <column 2>, fill = <column 1>)) + # fill = <column 1> is optional; no y
for counts

geom bar (stat = "identity") + # "identity" for values, "count" for
counts

xlab ("<x-axis label>") + ylab("<y-axis label>") +

ggtitle ("<graph title>")

Render a bar chart that shows mean values on the y axis (not sums of y values):

ggplot (data = <dataframe>,

aes (x = <column 1>, y = <column 2>, fill = <column 1>)) + # fill = <column 1> is optional; no y
for counts

geom bar (stat = "summary", fun = "mean") # use both stat = "summary" and fun =
"mean"

ggplot (<dataframe>, aes(x = <column 1>, fill = <column 2>)) +

geom _bar (position = "dodge", width = <bin width>) + # "dodge": bar grouping, <bin width>:
0.2-0.6

labs(x = "<x-label>", y = "<y-label>", title = "<title>") +

theme bw ()

Line graphs:

ggplot (data = <dataframe>,

aes (x = <column 1>, y = <column 2>, group = 1)) + # group = 1: one line, all points connected

geom_line(colour = "<colour>", linetype = "<linetype>", size = <line thickness>) +

geom_point (colour="<colour>", size = <point size>, shape = <point shape>, fill = "<point fill colour>")
+

xlab ("<x-axis label>") + ylab("<y-axis label>") +

ggtitle ("<graph title>")

All parameters in geom line() and in geom point() are optional.

The defaults are: colour = "black", linetype = "solid", size = 1, shape = 21 (circle), fill = "black"

See http://www.cookbook-r.com/Graphs/Colors (ggplot2)/

for more information on colors.

See http://www.cookbook-r.com/Graphs/Shapes and line types/

for information on shapes and line types.

Scatterplots:

ggplot (<dataset>, aes(x = <num.var.l>, y = <num.var.2>)) +

geom point (shape = <n>, # <n> = 1: hollow circle

fill = <color 1>, # color of point fill (optional)

color = <color 2>, # color of point line (optional)

size = <s>) + # size of point line (optional)

geom_smooth (method = 1m, # add regression line (optional); if left out, nonlinear best-fit line is
s

hown

se=FALSE) # do NOT show 95% confidence region as a shaded area (optional)

<scatterplot> <-

ggplot (<dataset>, aes(x = <num.var.l>, y = <num.var.2>)) +

geom_point (shape = <n>, # <n> = 1: hollow circle, no fill; <n> = 21: circle that can be filled
fill = <color 1>, # color of point fill (optional)

color = <color 2>, # color of point line (optional)

size = <s>) # size of point line (optional)

<scatterplot> <- <scatterplot> + xlab("<x label>") # label/caption on x-axis

<scatterplot> <- <scatterplot> + ylab("<y label>") # label/caption on x-axis

<scatterplot> <- <scatterplot> + ggtitle("<scatterplot title>") # scatterplot title

Boxplots:

boxplot (<dataset>$<column name>, xlab = "<column name>") # basic boxplot for <column name>

boxplot.stats (<dataset>$<column name>) # returns the stats used for drawing a boxplot
ggplot (<dataset>, # ggplot2 boxplots

aes(x = "", y = <column name>, fill = "<color>")) + # show boxplot of <column name>

geom_boxplot (width = 0.5) + # boxplot width

stat boxplot (geom ='errorbar', width = 0.15) + # show whiskers, control their width

guides (fill = FALSE) + # no legend (it makes no sense here)

xlab("") # no x—-axis label (it makes no sense here)
Histograms:

ggplot (data = <dataset>, mapping = aes(x = <column name>)) +

geom_histogram(bins = <nbins>,

fill = "<fill color>",

color = "<line color>")

Density graphs:

ggplot (data = <dataset>,

mapping = aes(x = <num. var.>, fill = <fill var.>)) +

geom _density(alpha = <value>) + # alpha: plot transparency (0-1, optional)
theme bw ()

#HeHH4

ML

HHEHHES

H e S e e e e S = = S S

Model building and examination:

<model> <- Im(<y> ~ <x1> + <x2> + ..., # build/fit the model over the <dataset>;
data = <dataset>) # <x> and <y> are numeric variables from <dataset>

<model> # show the model
coef (<model>) # show the coefficients of the linear model (intercept and slope)
confint (<model>) # show the confidence intervals for the estimated intercept and slope
summary (<model>) # show the model statistics
library(rpart)
<model> <- rpart (<output variable> ~ # build the tree

<predictor variable 1> + <predictor variable 2> + ..., # . to include all variables

data = <train dataset>,

method = "class", # build classification tree

control = rpart.control (minsplit = <n>, cp = <g>)) # decrease both for larger tree
Alternatively:
<model> <- rpart (<output variable> ~ ., # use almost all vars,

data = subset (<train dataset>,

select =
-c (<predictor variable i> +
<predictor wvariable j> + ...)), # excluding some specific ones

method = "class")
Alternatively:
<model> <- rpart (<output variable> ~ ., # use almost all vars,

data = within(<train dataset>,

rm (<predictor variable i>, # excluding some specific ones
<predictor variable j>, ...)
method = "class")

library(rattle)
library(rpart.plot)

library (RColorBrewer)
fancyRpartPlot (<decision tree>)

<model> <- kmeans (x = <normalized dataframe>,
centers = <k>, # K = <k>
iter.max = <i>, # max number of iterations allowed, e.g. 20
nstart = <n>) # no. of initial configurations, e.g. 1000 (report

on the best one)

#
#
#

library(el071)
library (caret)
<folds> = trainControl (method = "cv", number = <k>) # define <k>-fold cross-validation

parameters

<cpGrid> = expand.grid(.cp = # specify the range of the cp values to
examine

seq(from = <start value>, to = <end wvalue>, by = <step>))

train(# find the optimal value for cp

x = <train dataset>[, c(<predictor variable 1>, <predictor variable 2>,)1,

y = <train dataset>$<output variable>,

method = "rpart", # use rpart() to build multiple
classification trees

control = rpart.control (minsplit = <n>), # optional; default minsplit is 20

trControl = <folds>, # <folds> from above

tuneGrid = <cpGrid>) # <cpGrid> from above

<prunned model> <- prune (<model>, cp = <optimal cp value>)

library(class)

<model> <- knn(train = <training dataset>, # training data without the output (class) variable
test = <test dataset>, # test data without the output (class) variable

cl = <class values for training>, # output (class) variable is specified here

k = <n>) # <n>: random guess, or obtained from cross-validation
library(el071)

?naiveBayes

<model> <- naiveBayes (<output variable> ~ ., # include all predictors from the training set
data = <training dataset>)

<model> <- naiveBayes (<output variable> ~

<var 1> + <var 2> + .y # include only selected predictors from the training
set

data = <training dataset>)

Multicolinearity:

library(car)

vif (<model>)

sgrt(vif (<model>)) # variables with sqgrt(vif) > 2 (2.5 - disagreement) are problematic

Making predictions:

<predictions> <- predict (<model>,

<test dataframe>,

interval = "confidence" | # include the confidence interval for the predictions
(optional; used only in linear regression)

"predict") # include prediction intervals (optional)

<predictions> <- predict (object = <decision tree>,

newdata = <test dataset>,

type = "class") # for classification task

H H H H H H H H H W W W

H H H W H H

H H H e e H H W W S e e e

<predictions> <- predict

<predictions>[<il>:<ik>]

(object = <NB model>,

newdata = <test dataset>,

type = "raw") # compute probabilities, not classes
examine some of the predictions

<predictions dataframe> <-
data.frame (<observation ID> = <test dataset>$<observation ID column>,
<another relevant feature> = <test dataset>$<another relevant feature column>,
-
<output feature> = <test dataset>$<output variable>,

<predictions feature> = <predictions>)

Diagnostic plots:

par (mfrow = c(2,2))
plot (<model>)
par (mfrow = c(1,1))

Leverage points:
plot (<model>, 4, id.n =

set up the plotting panel for 4 graphs
plot the 4 graphs
reset the plotting panel

<k>) # Cook's distance for points in the <model>,
highlighting top id.n most extreme values (id.n default:

<leverge statistic> <- hatvalues (<model>) # <leverge statistic>: high-leverage points in the model
plot (<leverge statistic>)

<cutoff leverage> <- 2 *

R-squared and RMSE:
Compute R-squared on the
R-squared = 1 - RSS/TSS,
<predictions RSS> <-

sum ((<predictions> - <
<predictions TSS> <-

sum ((mean (<train datas

(p + 1) / n # n - no. of observations, p - no. of predictors

test data for a model:

where RSS is the residual sum of squares, and TSS is the total sum of squares
test dataset>$<output variable>)"2)

et>$<output variable>) - <test dataset>S$<output variable>)"2)

<R-squared> <- 1 - <predictions RSS> / <predictions TSS>

<R-squared>

Compute Root Mean Square
to see how much error we
RMSE = sqgrt (RSS/n)

d Error (RMSE) for a model on the test data
are making with the predictions:

<predictions RMSE> <- sqgrt (<predictions RSS> / nrow (<test dataset>))

<predictions RMSE>

ROC curve (Receiver Operating Characteristic)
library (pROC)
<ROC curve parameters> <- # compute ROC curve parameters
roc (response = <test dataset>S$<output variable>,
predictor = <predicted probabilities>[, <1 | 2>]) # col. no. of the "positive class" (can be the No

lass!)
<ROC curve parameters>S$auc # extract and show AUC
plot.roc (KROC curve parameters>, # computed in the previous step

print.thres = TRUE, # show the probability threshold (cut-off point) on the plot

print.thres.best.method =

"youden" | # maximize the sum of sensitivity and specificity (the distance to the

HH= H H H H Q FH o H H K

[oF
-
Q
Q

line)
"closest.topleft") # minimize the distance to the top-left point of the plot
<ROC coords> <- coords (<ROC curve parameters>, # computed in the previous step
ret = c("accuracy", "spec", "sens", "thr", ...), # ROC curve parameters to return
X = # the coordinates to look for:
"local maximas" | # local maximas of the ROC curve
"best" | ...) # the point with the best sum of sensitivity and

H H H H H

specificity, i.e.
the same as the one shown on the ROC curve

Compare multiple clustering results/schemes:

install.packages ("fpc")

library (fpc)

?cluster.stats

<comparison criteria> <- # specify criteria (from cluster.stats()) for comparing
c("<criterion 1>", different clusterings (e.g., "max.diameter", "min.separation",

"<criterion 2>", ...) # "average.between", "average.within", "within.cluster.ss", ...)
<distance matrix> <-

=

dist(x = <normalized dataset>)
<comparison> <- sapply(list(<clustering 1 name> <clustering 1>, # <clustering 1> computed by kmeans ()
<clustering 1 name> = <clustering 2>, # <clustering 2> computed by kmeans ()
FUN = function (x)
cluster.stats (<distance matrix>, x)
install.packages ("knitr") #
library (knitr) #
kable (x = comparison, format = "rst")

) [<comparison criteria>,]
pretty-printing tables etc. in the console
(

a set of "fancy" reporting tools)

H H e e H e e e S e S S S e e S

