
#####
# R #
#####

# install.packages("<package name>")
# library(<package name>)

# print(<something>)
# Assignment statement: x <- <something>

# Manipulating objects in the workspace:
# ls()                      # list all objects in memory
# rm(<o1>, <o2>, <o3>, ...) # remove one or more objects from memory by their names
# rm(list = ls())           # remove all objects from memory (usually not recommended)

# Operators:
# +   Add, 2 + 3 = 5
# -   Subtract, 5 - 2 = 3
# *   Multiply, 2 * 3 = 6
# /   Divide, 6 / 2 = 3
# ^   Exponent, 2 ^ 3 = 8
# %% Modulus operator, 9%%2 = 1
# %/% Integer division, 9 %/% 2 = 4
# <   Less than
# >   Greater than
# =   Equal to
# <= Less than or equal to
# >= Greater than or equal to
# != Not equal to
# !   Not
# |   OR
# &   And

# Expressions:
# <x> / <y> - <z>^2 ...

# Absolute value:
# abs(<value>)



# Vectors:
# <y> <- c(<something1>, <something2>, <something3>, ...)
# <y> <- rep(<something>, <times>)
# <y> <- <int1>:<int2>
# <y> <- seq(from = <value1>, to = <value2>, by = <step>)

# Matrices:
# <m> <- matrix(c(3, 5, 7, 1, 9, 4), nrow = 3, ncol = 2, byrow = TRUE)
# <m>.nrow <- nrow(<m>) # number of rows
# <m>.ncol <- ncol(<m>) # number of columns
# <m> <- t(<m>)         # transpose <m>
# <m>[3,2]
# <m>[2, ]

# Lists: ordered collections of elements of different types
# <list> <- list(<e1.name> = <e1>, <e2.name> = <e2>, <e3.name> = <e3>, ...)
# <list>[[<index>]]     # accessing list element by index, showing value only (returns a vector)
# <list>[<index>]       # accessing list element by index, showing both name and value (returns a list)
# <list>$<element.name> # accessing list element by its name
# is.list(<something>)                                  # Is <something> a list?
# <combined.list> <- c(<list1>, <list2>, <list3>, ...)  # list concatenation
# names(<list>)                           # names of list elements
# <list>[names(<list>) == <element.name>] # all elements of a list having the same name
# unlist(<list>)                          # convert list into a named vector
# unlist(<list>, use.names = FALSE)       # convert list into a character vector
# append(<list>,                          # insert new element into an existing list, after index <n>
#        list(<e1.name> = <e>),           # new element must be a list itself, that's why list(<e1.name> =
<e>)
#             <n>)                        # <n> is optional; if omitted, new element is appended at the end
# <list>[[<n>]] <- NULL                   # remove <n>th element from <list>

# class(<something>)                    # data type
# mode(something), typeof(<something>)  # how a data item is internally stored in memory

# Factors:
# b <- c(1, 2, 2, 2, 3, 1, 1, 4, 5, 4)
# b.as.factor <- as.factor(b)
# levels(b.as.factor)
# f <- factor(c(1, 2, 3))



# Dataframes:
# e.g., <dataframe> <- as.data.frame(<matrix>)
# str(<dataframe>)

# Reading a dataset:
# <dataframe> <- read.csv("<filename>", stringsAsFactors = FALSE)

# Saving a dataset (modified or newly created dataset):
# write.csv(x = <dataframe>, file = "<filename>", row.names = F)  # do not include the row names (row
numbers) column
# saveRDS(object = <dataframe or another R object>, file = "<filename>")  # save R object for the next
session
# <dataframe or another R object> <- readRDS(file = "<filename>")         # restore R object in the next
session

# Examining a dataframe:
# str(<dataframe>)              # structure of <dataframe>, all variables/columns
# dim(<dataframe>)              # showing dimensions (numbers of rows and columns) of a dataframe
# names(<dataframe>)            # showing column names
# head(<dataframe>)             # the first few rows
# tail(<dataframe>)             # the last few rows
# <dataframe>[ , ]              # the entire dataframe
# <dataframe>                   # the entire dataframe
# <dataframe>[<m>, ]            # m-th row
# <dataframe>[ ,<n>]            # n-th column
# summary(<dataframe>$<column>) # summarizing a variable/column values
# fix(<dataframe>)              # editing a dataframe
# new.df <- edit(<dataframe>)   # editing a dataframe and assigning the modified dataframe to another
datavrame

# Adding/Removing columns to/from a dataframe:
# <dataframe>$<new column name> <- <default value>  # adding a new column (default values)
# <dataframe>$<column name> <- NULL                 # removing a column

# Adding a new row to a dataframe - the row must be a 1-line dataframe with the same column names:
# <new row> <- data.frame(<column name 1> = <value 1>, <column name 2> = <value 2>,...)
# <new data frame> <- rbind(<dataframe>, <new row>) # append new row to the end of the existing dataframe
# <new data frame> <- rbind(<dataframe>[1:i, ],     # insert new row in the middle



#                           <new row>,
#                           <dataframe>[(i + 1):nrow(<dataframe>), ])

# Removing rows from a dataframe
# <dataframe>[-i, ]                                 # show dataframe without i-th row
# <dataframe>[-c(i, j, k), ]                        # show dataframe without rows i, j, k
# <dataframe> <- <dataframe>[-i, ]                  # remove i-th row from dataframe
# <dataframe> <- <dataframe>[-c(i, j, k), ]         # remove rows i, j, k from dataframe
# <dataframe> <- <dataframe>[-(i:k), ]              # remove rows i to k from dataframe

# Changing column names:
# colnames(<dataframe>)[i] <- "<new name>"

# Changing row names:
# rownames(<dataframe>)[i] <- "<new name>"
# rownames(<dataframe>) <- c("<new name 1>", "<new name 2>",...)
# rownames(<dataframe>) <- c(1, 2,...)
# rownames(<dataframe>) <- list("<new name 1>", <numeric 2>,...)

# Slicing and dicing dataframes:
# <selection> <- <dataframe>[<some rows>, <some columns>]
# <selection> <- <dataframe>[i:k, c("<column 1>", "<column 2>",...)]
# <selection> <- <dataframe>[<indexes>, ]
# <selection> <- subset(<dataframe>,                                  # subset() is much like SELECT...
FROM... WHERE
#                       <logical condition for the rows to return>, 
#                       <select statement for the columns to return>) # can be omitted; column names not
prefixed by <dataframe>$
# <new dataframe> <- <dataframe>[, c("<col1 name>", "<col2 name>")]
# <new dataframe> <- <dataframe>[, <col1 index>:<col2 index>)]

# Shuffling rows/columns:
# <dataframe> <- <dataframe>[sample(nrow(<dataframe>)), ]   # shuffle row-wise
# <dataframe> <- <dataframe>[, sample(ncol(<dataframe>))]   # shuffle column-wise

# Replacing selected values in a column:
# <selected var name> <- <dataframe>$<column> == <selected value>
# <dataframe>$<column>[<selected var name>] <- <new value>



# Applying functions to all elements in rows/columns of a dataframe:
# apply(<dataframe>, <1 | 2>, <function(x) {...}>)  # 1 | 2: apply function(x) by row | column
# IMPORTANT: use drop = FALSE in apply(...) when subsetting <dataframe> with [], 
# i.e. <dataframe>[i, j, drop = FALSE]
# sapply(<vector>, FUN = function(x) {...})   # function(x): function to be applied to each element of
<vector>

# Partitioning a dataframe:
# install.packages('caret')
# library(caret)
# set.seed(<any specific int>)  # allows for repeating the randomization process exactly
# <indexes> <- createDataPartition(<dataframe>$<column>, p = 0.8, list = FALSE)
# <partition 1> <- <dataframe>[<indexes>, ]
# <partition 2> <- <dataframe>[-<indexes>, ]

# for, if, break, next:
# for (<i> in <int vector>) {
#   <line 1>
#   <line 2>
#   ...
#   if (<logical condition>) {
#     <line i1>
#     <line i2>
#     ...
#     break       # break: exit the loop; next: skip the remaining lines in this iteration
#   } 
#   ...
#   <line n>
# }

# while, if-else, break, next:
# <i> <- <initial value>
# while (logical condition involving <i>) {
#   <line 1>
#   <line 2>
#   ...
#   if (<logical condition>) {
#     <line i1>
#     <line i2>



#     ...
#     break       # break: exit the loop; next: skip the remaining lines in this iteration
#   } else {
#     <line j1>
#     <line j2>
#     ...
#   }
#   ...
#   <line n>
#   <i> <- <modify <i>>
# }

# ifelse(<condition>, v1, v2)   # can return a vector

# Data type conversion
# b <- c(1, 2, 2, 2, 3, 1, 1, 4, 5, 4)
# b.as.factor <- as.factor(b)
# levels(b.as.factor)
# e.g., <dataframe> <- as.data.frame(<matrix>)
# str(<dataframe>)
# ...
# Convert numeric to factor:
# <dataframe>$<numeric column with few different values> <- 
#     factor(<dataframe>$<numeric column with few different values>, 
#             levels = c(0, 1, ..., k), labels = c("<l1>", "<l2>", ..., "<lk>"))

# Attributes of R objects (dataframes, matrices, factors, lists, tables...)
# attributes(<dataframe> | <matrix> | <factor> | <list> | table | ...)

# Tables
# The table() function:
# table(<var>)  # typically a factor or an integer var
# The prop.table() function:
# prop.table(table(<var>))
# round(prop.table(table(<var>)), digits = <n>)
# Row and column margins:
# table(<var1>, <var2>)                                   # <var1>, <var2>: usually factors or integers
# table(<rows title> = <var1>, <columns title> = <var2>)  # add common titles for rows/columns
# prop.table(table(<var1>, <var2>), margin = 1)           # all row margins (sums of values by row) are 1.0



# prop.table(table(<var1>, <var2>), margin = 2)           # all column margins (sums of values by column)
are 1.0

# Vectors
# Differences in initializing vectors and dataframe columns:
# <vector> <- rep(<value>, <times>)
# <vector> <- <value>
# <dataframe>$<column> <- rep(<value>, <times>)
# <dataframe>$<column> <- <value>
# Length of a vector:
# length(<vector>)
# Counting the number of elements with the values of <x> in a vector:
# 1.  <table> <- table(<vector>)
#     <table>
#     <table>["<x>"], or <table>[names(<table>) == <x>]
# 2.  sum(<vector> == <x>)
# 3.  length(which(<vector> == <x>))    # which() is like WHERE in SQL
# Appending an element to a vector:
# <vector> <- c(<vector>, <element>)        # type conversion occurs if <element> is of different type than
v[i]
# <vector> <- append(<vector>, <element>)   # type conversion occurs if <element> is of different type than
v[i]
# <vector> <- append(<vector>, <element>, 
#                           after = <n>)    # insert <=> append at a desired location
# <vector> <- append(<vector>, NA)
# Removing NAs from a vector in NA-sensitive functions:
# <function>(<vector>, na.rm = TRUE)
# Selecting items matching criteria from a numeric vector (added check for NAs and NaNs):
# <numeric vector> <- c(<n1>, <n2>, <n3>, ..., NA, ...NaN)
# <selected> <- <numeric vector>[<logical criterion> & !is.na(<numeric vector>)]  # is.na() is TRUE for both
NA and NaN
# is.na() is the only way to test if <something> is NA (<something> == NA does not work)
# Range of a numeric vector:
# range(<vector>)
# Create numeric vector with <length> elements:
# <vector> <- vector(mode = "numeric", length = <length>)

# Check if numeric variables follow normal distribution:



# summary(<numeric variable>)             # the mean and the median values similar: probably normal
distribution
# plot(density((<numeric variable>))      # visual inspection
# hist(<numeric variable>, breaks = <n>)  # visual inspection; <n>: number of bins in the histogram
# qqnorm(<numeric variable>)              # values lie more or less along the diagonal (straight line)
# shapiro.test(<numeric variable>)        # good for small sample sizes, e.g. n < ~2000; H0: normal
distribution

# Discretizing numeric variables (using bnlearn::discretize()):
# library(bnlearn)
# ?discretize()
# <new dataframe with discretized variables> <- 
#   discretize(<numeric dataframe>,               # <original dataframe>[, c(<num. col. 1>, <num. col. 1>,
...]
#              method = "quantile" |              # use equal-frequency intervals (default)
#              method = "interval",               # use equal-length intervals
#              breaks = c(<n1>, <n2>, ..., <ncol>))       # no. of discrete intervals for each column

# Scatterplot matrices (useful for examining the presence of linear relationship between several pairs of
variables):
# pairs(~<x1> + <x2> + ..., data = <dataframe>)

# Data normalization:
# library(clusterSim)
# <dataframe with numeric columns> <-                       # works with vectors and matrices as well
#   data.Normalization(<dataframe with numeric columns>,
#                      type = "n4",                         # normalization: (x - min(x)) / (max(x) -
min(x))
#                      normalization = "column")            # normalization by columns
# Alternatively:
# <norm.f> = function(x) {(x-min(x))/(max(x)-min(x))}
# <dataframe with numeric columns>[] <-                     # [] preserves the "data.frame" class
#   lapply(<dataframe with numeric columns>, <norm.f>)
# Alternatively:
# install.packages("scales")
# library(scales)
# <dataframe with numeric columns> <-
#   lapply(<dataframe with numeric columns>, rescale)       # normalization: (x - min(x)) / (max(x) -
min(x))



# Alternatively:
# install.packages("caret")
# library(caret)
# <pre-processed object> <-
#   preProcess(<dataframe with numeric columns>, 
#              method = 'range')                            # normalization: (x - min(x)) / (max(x) -
min(x))
# <dataframe with numeric columns> <- 
#   predict(<pre-processed object>, 
#           <dataframe with numeric columns>)

# Correlation plots:                            # correlations between numeric variables in the dataset
# <numeric dataframe> <-                                        # create all-numeric dataframe, 
#   data.frame(<num col 1 name> = <dataframe>$<num col 1>,      # leave out all non-numeric columns 
#              <num col 2 name> = <dataframe>$<num col 2>,      # from the original dataframe
#              ...)
# <correlation matrix> <- cor(<numeric dataframe>)              # all-numeric dataframe
# library(corrplot)
# corrplot.mixed(<correlation matrix>, tl.cex = <text font size>, number.cex = <number font size>)

# Quantiles/Percentiles:
# <quantiles> <- quantile(<dataset>$<column name>,          # examine the 0th, 2.5th, ..., percentile
#                         probs = seq(from = 0.0, to = 0.1, by = 0.025))

# Sorting:
# sort(<numeric vector>)            # sort <numeric vector>

# install.packages("knitr")                                 # pretty-printing tables etc. in the console
# library(knitr)                                            # (a set of "fancy" reporting tools)
# kable(x = <stats>, format = "rst")

#### ggplot2

# Bar graphs:
# ggplot(data = <dataframe>, 
#        aes(x = <column 1>, y = <column 2>, fill = <column 1>)) +  # fill = <column 1> is optional; no y
for counts



#   geom_bar(stat = "identity") +                                   # "identity" for values, "count" for
counts
#   xlab("<x-axis label>") + ylab("<y-axis label>") +
#   ggtitle("<graph title>")
# Render a bar chart that shows mean values on the y axis (not sums of y values):
# ggplot(data = <dataframe>, 
#        aes(x = <column 1>, y = <column 2>, fill = <column 1>)) +  # fill = <column 1> is optional; no y
for counts
#   geom_bar(stat = "summary", fun = "mean")                        # use both stat = "summary" and fun =
"mean"
# ggplot(<dataframe>, aes(x = <column 1>, fill = <column 2>)) +
#   geom_bar(position = "dodge", width = <bin width>) +             # "dodge": bar grouping, <bin width>:
0.2-0.6
#   labs(x = "<x-label>", y = "<y-label>", title = "<title>") +
#   theme_bw()

# Line graphs:
# ggplot(data = <dataframe>, 
#        aes(x = <column 1>, y = <column 2>, group = 1)) +  # group = 1: one line, all points connected
#   geom_line(colour = "<colour>", linetype = "<linetype>", size = <line thickness>) + 
#   geom_point(colour="<colour>", size = <point size>, shape = <point shape>, fill = "<point fill colour>")
+ 
#   xlab("<x-axis label>") + ylab("<y-axis label>") +
#   ggtitle("<graph title>")
# All parameters in geom_line() and in geom_point() are optional.
# The defaults are: colour = "black", linetype = "solid", size = 1, shape = 21 (circle), fill = "black"
# See http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/ 
# for more information on colors. 
# See http://www.cookbook-r.com/Graphs/Shapes_and_line_types/  
# for information on shapes and line types.

# Scatterplots:
# ggplot(<dataset>, aes(x = <num.var.1>, y = <num.var.2>)) +
#   geom_point(shape = <n>,       # <n> = 1: hollow circle
#              fill = <color 1>,  # color of point fill (optional)
#              color = <color 2>, # color of point line (optional)
#              size = <s>) +      # size  of point line (optional)
#   geom_smooth(method = lm,      # add regression line (optional); if left out, nonlinear best-fit line is
shown



#               se=FALSE)         # do NOT show 95% confidence region as a shaded area (optional)
# <scatterplot> <- 
#   ggplot(<dataset>, aes(x = <num.var.1>, y = <num.var.2>)) +
#     geom_point(shape = <n>,         # <n> = 1: hollow circle, no fill; <n> = 21: circle that can be filled
#                fill = <color 1>,    # color of point fill (optional)
#                color = <color 2>,   # color of point line (optional)
#                size = <s>)          # size  of point line (optional)
# <scatterplot> <- <scatterplot> + xlab("<x label>")                    # label/caption on x-axis
# <scatterplot> <- <scatterplot> + ylab("<y label>")                    # label/caption on x-axis
# <scatterplot> <- <scatterplot> + ggtitle("<scatterplot title>")       # scatterplot title

# Boxplots:
# boxplot(<dataset>$<column name>, xlab = "<column name>")    # basic boxplot for <column name>
# boxplot.stats(<dataset>$<column name>)                      # returns the stats used for drawing a boxplot
# ggplot(<dataset>,                                           # ggplot2 boxplots
#        aes(x = "", y = <column name>, fill = "<color>")) +  # show boxplot of <column name>
#        geom_boxplot(width = 0.5) +                          # boxplot width
#        stat_boxplot(geom ='errorbar', width = 0.15) +       # show whiskers, control their width
#        guides(fill = FALSE) +                               # no legend (it makes no sense here)
#        xlab("")                                             # no x-axis label (it makes no sense here)

# Histograms:
# ggplot(data = <dataset>, mapping = aes(x = <column name>)) +
#   geom_histogram(bins = <nbins>, 
#                  fill = "<fill color>", 
#                  color = "<line color>")

# Density graphs:
# ggplot(data = <dataset>,
#        mapping = aes(x = <num. var.>, fill = <fill var.>)) +
#   geom_density(alpha = <value>) +                           # alpha: plot transparency (0-1, optional)
#   theme_bw()

######
# ML #
######



# Model building and examination:
# <model> <- lm(<y> ~ <x1> + <x2> + ...,          # build/fit the model over the <dataset>; 
#               data = <dataset>)                 # <x> and <y> are numeric variables from <dataset>
# <model>                   # show the model
# coef(<model>)             # show the coefficients of the linear model (intercept and slope)
# confint(<model>)          # show the confidence intervals for the estimated intercept and slope
# summary(<model>)          # show the model statistics
# library(rpart)
# <model> <- rpart(<output variable> ~                                     # build the tree
#                  <predictor variable 1> + <predictor variable 2> + ...,  # . to include all variables
#                  data = <train dataset>,
#                  method = "class",                                       # build classification tree
#                  control = rpart.control(minsplit = <n>, cp = <q>))      # decrease both for larger tree
# Alternatively: 
# <model> <- rpart(<output variable> ~ .,                                  # use almost all vars, 
#                  data = subset(<train dataset>, 
#                                select = 
#                                  -c(<predictor variable i> + 
#                                     <predictor variable j> + ...)),      # excluding some specific ones
#                  method = "class")
# Alternatively: 
# <model> <- rpart(<output variable> ~ .,                                  # use almost all vars, 
#                  data = within(<train dataset>, 
#                                rm(<predictor variable i>,                # excluding some specific ones
#                                   <predictor variable j>, ...)
#                  method = "class")
# library(rattle)
# library(rpart.plot)
# library(RColorBrewer)
# fancyRpartPlot(<decision tree>)
# <model> <- kmeans(x = <normalized dataframe>, 
#                   centers = <k>,                       # K = <k>
#                   iter.max = <i>,                      # max number of iterations allowed, e.g. 20
#                   nstart = <n>)                        # no. of initial configurations, e.g. 1000 (report
on the best one)
# library(e1071)
# library(caret)
# <folds> = trainControl(method = "cv", number = <k>)           # define <k>-fold cross-validation
parameters



# <cpGrid> = expand.grid(.cp =                                  # specify the range of the cp values to
examine
#                        seq(from = <start value>, to = <end value>, by = <step>))
# train(                                                        # find the optimal value for cp
#       x = <train dataset>[, c(<predictor variable 1>, <predictor variable 2>, ...)],
#       y = <train dataset>$<output variable>,
#       method = "rpart",                                       # use rpart() to build multiple
classification trees
#       control = rpart.control(minsplit = <n>),                # optional; default minsplit is 20
#       trControl = <folds>,                                    # <folds> from above
#       tuneGrid = <cpGrid>)                                    # <cpGrid> from above
# <prunned model> <- prune(<model>, cp = <optimal cp value>)
# library(class)
# <model> <- knn(train = <training dataset>,        # training data without the output (class) variable
#                test = <test dataset>,             # test data without the output (class) variable
#                cl = <class values for training>,  # output (class) variable is specified here
#                k = <n>)                           # <n>: random guess, or obtained from cross-validation 
# library(e1071)
# ?naiveBayes
# <model> <- naiveBayes(<output variable> ~ .,          # include all predictors from the training set
#                       data = <training dataset>)
# <model> <- naiveBayes(<output variable> ~ 
#                       <var 1> + <var 2> + ...,        # include only selected predictors from the training
set
#                       data = <training dataset>)
# Multicolinearity:
# library(car)
# vif(<model>)
# sqrt(vif(<model>))    # variables with sqrt(vif) > 2 (2.5 - disagreement) are problematic

# Making predictions:
# <predictions> <- predict(<model>,
#         <test dataframe>,
#         interval = "confidence" |           # include the confidence interval for the predictions
(optional; used only in linear regression)
#                    "predict")               # include prediction intervals (optional)
# <predictions> <- predict(object = <decision tree>, 
#                          newdata = <test dataset>, 
#                          type = "class")    # for classification task



# <predictions> <- predict(object = <NB model>, 
#                          newdata = <test dataset>, 
#                          type = "raw")      # compute probabilities, not classes
# <predictions>[<i1>:<ik>]                    # examine some of the predictions
# <predictions dataframe> <- 
#       data.frame(<observation ID> = <test dataset>$<observation ID column>, 
#                  <another relevant feature> = <test dataset>$<another relevant feature column>, 
#                  ..., 
#                  <output feature> = <test dataset>$<output variable>, 
#                  <predictions feature> = <predictions>)

# Diagnostic plots:
# par(mfrow = c(2,2))     # set up the plotting panel for 4 graphs
# plot(<model>)           # plot the 4 graphs
# par(mfrow = c(1,1))     # reset the plotting panel

# Leverage points:
# plot(<model>, 4, id.n = <k>)                  # Cook's distance for points in the <model>, 
#                                               # highlighting top id.n most extreme values (id.n default:
3)
# <leverge statistic> <- hatvalues(<model>)     # <leverge statistic>: high-leverage points in the model
# plot(<leverge statistic>)
# <cutoff leverage> <- 2 * (p + 1) / n          # n - no. of observations, p - no. of predictors

# R-squared and RMSE:
# Compute R-squared on the test data for a model:
# R-squared = 1 - RSS/TSS, where RSS is the residual sum of squares, and TSS is the total sum of squares
# <predictions RSS> <- 
#   sum((<predictions> - <test dataset>$<output variable>)^2)
# <predictions TSS> <- 
#   sum((mean(<train dataset>$<output variable>) - <test dataset>$<output variable>)^2)
# <R-squared> <- 1 - <predictions RSS> / <predictions TSS>
# <R-squared>
# Compute Root Mean Squared Error (RMSE) for a model on the test data 
# to see how much error we are making with the predictions:
# RMSE = sqrt(RSS/n)
# <predictions RMSE> <- sqrt(<predictions RSS> / nrow(<test dataset>))
# <predictions RMSE>



# ROC curve (Receiver Operating Characteristic)
# library(pROC)
# <ROC curve parameters> <-                               # compute ROC curve parameters
#   roc(response = <test dataset>$<output variable>, 
#       predictor = <predicted probabilities>[, <1 | 2>]) # col. no. of the "positive class" (can be the No
class!)
# <ROC curve parameters>$auc                              # extract and show AUC 
# plot.roc(<ROC curve parameters>,              # computed in the previous step
#          print.thres = TRUE,                  # show the probability threshold (cut-off point) on the plot
#          print.thres.best.method = 
#             "youden" |          # maximize the sum of sensitivity and specificity (the distance to the
diag. line)
#             "closest.topleft")  # minimize the distance to the top-left point of the plot
# <ROC coords> <- coords(<ROC curve parameters>,                            # computed in the previous step 
#                        ret = c("accuracy", "spec", "sens", "thr", ...),   # ROC curve parameters to return
#                        x =                    # the coordinates to look for:
#                            "local maximas" |  # local maximas of the ROC curve
#                            "best" | ...)      # the point with the best sum of sensitivity and
specificity, i.e. 
#                                               # the same as the one shown on the ROC curve

# Compare multiple clustering results/schemes:
# install.packages("fpc")
# library(fpc)
# ?cluster.stats
# <comparison criteria> <-              # specify criteria (from cluster.stats()) for comparing 
#   c("<criterion 1>",                  # different clusterings (e.g., "max.diameter", "min.separation", 
#     "<criterion 2>", ...)             # "average.between", "average.within", "within.cluster.ss", ...)
# <distance matrix> <- 
#   dist(x = <normalized dataset>)
# <comparison> <- sapply(list(<clustering 1 name> = <clustering 1>, # <clustering 1> computed by kmeans()
#                             <clustering 1 name> = <clustering 2>, # <clustering 2> computed by kmeans()
#                        FUN = function(x)
#                         cluster.stats(<distance matrix>, x))[<comparison criteria>, ]
# install.packages("knitr")                                 # pretty-printing tables etc. in the console
# library(knitr)                                            # (a set of "fancy" reporting tools)
# kable(x = comparison, format = "rst")


